Kenta Masui
Ludwig Institute for Cancer Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenta Masui.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Erina Vlashi; Chann Lagadec; Laurent Vergnes; Tomoo Matsutani; Kenta Masui; Maria Poulou; Ruxandra Popescu; Lorenza Della Donna; Patrick Evers; Carmen Dekmezian; Karen Reue; Heather R. Christofk; Paul S. Mischel; Frank Pajonk
Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.
Science | 2014
David Nathanson; Beatrice Gini; Jack Mottahedeh; Koppany Visnyei; Tomoyuki Koga; German Gomez; Ascia Eskin; Kiwook Hwang; Jun Wang; Kenta Masui; Andres A. Paucar; Huijun Yang; Minori Ohashi; Shaojun Zhu; Jill Wykosky; Rachel Reed; Stanley F. Nelson; Timothy F. Cloughesy; C. David James; P. Nagesh Rao; Harley I. Kornblum; James R. Heath; Webster K. Cavenee; Frank B. Furnari; Paul S. Mischel
Playing Hide and Seek Targeted cancer therapies have shown promising results in patients, but few of these drugs provide long-term benefits because tumor cells rapidly develop drug resistance. Nathanson et al. (p. 72, published online 5 December) show that glioblastoma cells can become resistant to erlotinib, an epidermal growth factor receptor (EGFR)–targeted drug, by eliminating extrachromosomal copies of the mutant EGFR gene. After a period of drug withdrawal, the mutant EGFR gene reappears on extrachromosomal DNA and the tumor cells become resensitized. The discovery that cancer cells can evade drug therapy by this “hide and seek” mechanism may help to optimize the dosing schedule of erlotinib in glioblastoma patients. Tumor cells become resistant to targeted therapies by eliminating the gene encoding the drug target from extrachromosomal DNA. Intratumoral heterogeneity contributes to cancer drug resistance, but the underlying mechanisms are not understood. Single-cell analyses of patient-derived models and clinical samples from glioblastoma patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) demonstrate that tumor cells reversibly up-regulate or suppress mutant EGFR expression, conferring distinct cellular phenotypes to reach an optimal equilibrium for growth. Resistance to EGFR TKIs is shown to occur by elimination of mutant EGFR from extrachromosomal DNA. After drug withdrawal, reemergence of clonal EGFR mutations on extrachromosomal DNA follows. These results indicate a highly specific, dynamic, and adaptive route by which cancers can evade therapies that target oncogenes maintained on extrachromosomal DNA.
Cell Metabolism | 2013
Kenta Masui; Kazuhiro Tanaka; David Akhavan; Ivan Babic; Beatrice Gini; Tomoo Matsutani; Akio Iwanami; Feng Liu; Genaro R. Villa; Yuchao Gu; Carl Campos; Shaojun Zhu; Huijun Yang; William H. Yong; Timothy F. Cloughesy; Ingo K. Mellinghoff; Webster K. Cavenee; Reuben J. Shaw; Paul S. Mischel
Aerobic glycolysis (the Warburg effect) is a core hallmark of cancer, but the molecular mechanisms underlying it remain unclear. Here, we identify an unexpected central role for mTORC2 in cancer metabolic reprogramming where it controls glycolytic metabolism by ultimately regulating the cellular level of c-Myc. We show that mTORC2 promotes inactivating phosphorylation of class IIa histone deacetylases, which leads to the acetylation of FoxO1 and FoxO3, and this in turn releases c-Myc from a suppressive miR-34c-dependent network. These central features of activated mTORC2 signaling, acetylated FoxO, and c-Myc levels are highly intercorrelated in clinical samples and with shorter survival of GBM patients. These results identify a specific, Akt-independent role for mTORC2 in regulating glycolytic metabolism in cancer.
Journal of Clinical Investigation | 2015
Kazuhiro Tanaka; Takashi Sasayama; Yasuhiro Irino; Kumi Takata; Hiroaki Nagashima; Naoko Satoh; Katsusuke Kyotani; Takashi Mizowaki; Taichiro Imahori; Yasuo Ejima; Kenta Masui; Beatrice Gini; Huijun Yang; Kohkichi Hosoda; Ryohei Sasaki; Paul S. Mischel; Eiji Kohmura
The mechanistic target of rapamycin (mTOR) is hyperactivated in many types of cancer, rendering it a compelling drug target; however, the impact of mTOR inhibition on metabolic reprogramming in cancer is incompletely understood. Here, by integrating metabolic and functional studies in glioblastoma multiforme (GBM) cell lines, preclinical models, and clinical samples, we demonstrate that the compensatory upregulation of glutamine metabolism promotes resistance to mTOR kinase inhibitors. Metabolomic studies in GBM cells revealed that glutaminase (GLS) and glutamate levels are elevated following mTOR kinase inhibitor treatment. Moreover, these mTOR inhibitor-dependent metabolic alterations were confirmed in a GBM xenograft model. Expression of GLS following mTOR inhibitor treatment promoted GBM survival in an α-ketoglutarate-dependent (αKG-dependent) manner. Combined genetic and/or pharmacological inhibition of mTOR kinase and GLS resulted in massive synergistic tumor cell death and growth inhibition in tumor-bearing mice. These results highlight a critical role for compensatory glutamine metabolism in promoting mTOR inhibitor resistance and suggest that rational combination therapy has the potential to suppress resistance.
Cell Metabolism | 2013
Ivan Babic; Erik S. Anderson; Kazuhiro Tanaka; Deliang Guo; Kenta Masui; Bing Li; Shaojun Zhu; Yuchao Gu; Genaro R. Villa; David Akhavan; David Nathanson; Beatrice Gini; Sergey Mareninov; Rui Li; Carolina Espindola Camacho; Siavash K. Kurdistani; Ascia Eskin; Stanley F. Nelson; William H. Yong; Webster K. Cavenee; Timothy F. Cloughesy; Heather R. Christofk; Douglas L. Black; Paul S. Mischel
Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full-length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.
Cancer Cell | 2016
Wei Wei; Young Shik Shin; Min Xue; Tomoo Matsutani; Kenta Masui; Huijun Yang; Shiro Ikegami; Yuchao Gu; Ken Herrmann; Dazy Johnson; Xiangming Ding; Kiwook Hwang; Jungwoo Kim; Jian Zhou; Yapeng Su; Xinmin Li; Bruno Bonetti; Rajesh Chopra; C. David James; Webster K. Cavenee; Timothy F. Cloughesy; Paul S. Mischel; James R. Heath; Beatrice Gini
Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations.
Trends in Endocrinology and Metabolism | 2014
Kenta Masui; Webster K. Cavenee; Paul S. Mischel
Metabolic reprogramming is a central hallmark of cancer, enabling tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Understanding how oncogenes coordinate altered signaling with metabolic reprogramming and global transcription may yield new insights into tumor pathogenesis, and provide a new landscape of promising drug targets, while yielding important clues into mechanisms of resistance to the signal transduction inhibitors currently in use. We review here the recently identified central regulatory role for mechanistic target of rapamycin complex 2 (mTORC2), a downstream effector of many cancer-causing mutations, in metabolic reprogramming and cancer drug resistance. We consider the impact of mTORC2-related metabolism on epigenetics and therapeutics, with a particular focus on the intractable malignant brain tumor, glioblastoma multiforme (GBM).
Glia | 2010
Kenta Masui; Satoshi Suzuki; Rina Torisu; James E. Goldman; Peter Canoll; Toru Iwaki
Glial progenitors in the white matter and the subventricular zone are the major population of cycling cells in the postnatal central nervous system, and thought to be candidates for glioma‐initiating cells. However, less is known about the dividing cell populations in the brainstem than those in the cerebrum, leading to the lag of basic understanding of brainstem gliomas. We herein demonstrate much fewer cycling glial progenitors exist in the brainstem than in the cerebrum. We also show that infecting brainstem glial progenitors with PDGFB‐green fluorescent protein (GFP)‐expressing retrovirus induced tumors that closely resembled human malignant gliomas. Of note, brainstem tumors grew more slowly than cerebral tumors induced by the same retrovirus, and >80% tumor cells in the brainstem consisted of GFP‐positive, infected progenitors while GFP‐positive cells in the cerebral tumors were <20%. These indicate that cerebral tumors progressed rapidly by recruiting resident progenitors via paracrine mechanism whereas brainstem tumors grew more slowly by clonal expansion of the infected population. The cerebral and brainstem glial progenitors similarly showed reversible dedifferentiation upon PDGF stimulation in vitro and did not show the intrinsic difference in terms of the responsiveness to PDGF. We therefore suggest that slower, monoclonal progression pattern of the brainstem tumors is at least partly due to the environmental factors including the cell density of the glial progenitors. Together, these findings are the first implications regarding the cell‐of‐origin and the gliomagenesis in the brainstem.
Carcinogenesis | 2013
Kenta Masui; Beatrice Gini; Jill Wykosky; Ciro Zanca; Paul S. Mischel; Frank B. Furnari; Webster K. Cavenee
Chemotherapy and molecularly targeted approaches represent two very different modes of cancer treatment and each is associated with unique benefits and limitations. Both types of therapy share the overarching limitation of the emergence of drug resistance, which prevents these drugs from eliciting lasting clinical benefit. This review will provide an overview of the various mechanisms of resistance to each of these classes of drugs and examples of drug combinations that have been tested clinically. This analysis supports the contention that understanding modes of resistance to both chemotherapy and molecularly targeted therapies may be very useful in selecting those drugs of each class that will have complementing mechanisms of sensitivity and thereby represent reasonable combination therapies.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Kenta Masui; Kazuhiro Tanaka; Shiro Ikegami; Genaro R. Villa; Huijun Yang; William H. Yong; Timothy F. Cloughesy; Kanato Yamagata; Nobutaka Arai; Webster K. Cavenee; Paul S. Mischel
Significance Cancer cells reprogram their metabolism in response to growth factor receptor mutations. However, the effect of altered nutrient levels on oncogenic signaling and therapeutic response is not well understood. We demonstrate that glucose or acetate, two abundant “fuel” sources in the brain, promote epidermal growth factor receptor vIII (EGFRvIII)-dependent signaling through activation of mechanistic target of rapamycin complex 2 (mTORC2) by acetylation of its core component Rictor. This activity is mediated through elevated levels of acetyl-CoA. A surprising implication of this study is that glucose or acetate can contribute to targeted therapy resistance by maintaining signaling through downstream components of the growth factor receptor signaling cascade. Cancer cells adapt their signaling in response to nutrient availability. To uncover the mechanisms regulating this process and its functional consequences, we interrogated cell lines, mouse tumor models, and clinical samples of glioblastoma (GBM), the highly lethal brain cancer. We discovered that glucose or acetate is required for epidermal growth factor receptor vIII (EGFRvIII), the most common growth factor receptor mutation in GBM, to activate mechanistic target of rapamycin complex 2 (mTORC2) and promote tumor growth. Glucose or acetate promoted growth factor receptor signaling through acetyl-CoA–dependent acetylation of Rictor, a core component of the mTORC2 signaling complex. Remarkably, in the presence of elevated glucose levels, Rictor acetylation is maintained to form an autoactivation loop of mTORC2 even when the upstream components of the growth factor receptor signaling pathway are no longer active, thus rendering GBMs resistant to EGFR-, PI3K (phosphoinositide 3-kinase)-, or AKT (v-akt murine thymoma viral oncogene homolog)-targeted therapies. These results demonstrate that elevated nutrient levels can drive resistance to targeted cancer treatments and nominate mTORC2 as a central node for integrating growth factor signaling with nutrient availability in GBM.