Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kentaro Somiya is active.

Publication


Featured researches published by Kentaro Somiya.


Classical and Quantum Gravity | 2012

Detector configuration of KAGRA?the Japanese cryogenic gravitational-wave detector

Kentaro Somiya

The construction of the Japanese second-generation gravitational-wave detector KAGRA (previously called LCGT) has been started. In the next 6–7 years, we will be able to observe the spacetime ripple from faraway galaxies. KAGRA is equipped with the latest advanced technologies. The entire 3 km long detector is located in the underground to be isolated from the seismic motion, the core optics are cooled down to 20 K to reduce thermal fluctuations and quantum non-demolition techniques are used to decrease quantum noise. In this paper, we introduce the detector configuration of KAGRA, its design, strategy and downselection of parameters.


Physical Review D | 2013

Interferometer design of the KAGRA gravitational wave detector

Yoichi Aso; Yuta Michimura; Kentaro Somiya; Masaki Ando; O. Miyakawa; Takanori Sekiguchi; Daisuke Tatsumi; Hiroaki Yamamoto

KAGRA is a cryogenic interferometric gravitational-wave detector being constructed at the underground site of Kamioka mine in Gifu prefecture, Japan. We performed an optimization of the interferomter design, to achieve the best sensitivity and a stable operation, with boundary conditions of classical noises and under various practical constraints, such as the size of the tunnel or the mirror cooling capacity. Length and alignment sensing schemes for the robust control of the interferometer are developed. In this paper, we describe the detailed design of the KAGRA interferometer as well as the reasoning behind design choices.


Physical Review D | 2008

Double optical spring enhancement for gravitational wave detectors

H. Rehbein; H. Müller-Ebhardt; Kentaro Somiya; S. L. Danilishin; Roman Schnabel; Karsten Danzmann; Yanbei Chen

Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling technique. Candidate Advanced LIGO configurations are usually designed to have two resonances within the detection band, around which the sensitivity is enhanced: a stable optical resonance and an unstable optomechanical resonance—which is upshifted from the pendulum frequency due to the so-called optical-spring effect. As an alternative to a feedback control system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose detunings have opposite signs. The double optical spring also brings additional flexibility in reshaping the noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme can be extended easily to a multi-optical-spring system that allows further optimization.


Physical Review D | 2007

Local readout enhancement for detuned signal-recycling interferometers

H. Rehbein; H. Müller-Ebhardt; Kentaro Somiya; C. Li; Roman Schnabel; Karsten Danzmann; Yanbei Chen

High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detectors sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease.


Physical Review A | 2009

Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

H. Müller-Ebhardt; H. Rehbein; C. Li; Y. Mino; Kentaro Somiya; Roman Schnabel; Karsten Danzmann; Yanbei Chen

Long-baseline laser-interferometer gravitational-wave GW detectors are operating at a factor of 10 in amplitude above the standard quantum limit SQL within a broad frequency band in the sense that f f. Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics MQM—quantum mechanical behavior of objects in the realm of everyday experience—using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer’s classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.


Physical Review A | 2010

Probing macroscopic quantum states with a sub-Heisenberg accuracy

Haixing Miao; S. L. Danilishin; H. Müller-Ebhardt; H. Rehbein; Kentaro Somiya; Yanbei Chen

Significant achievements in high-sensitivity measurements will soon allow us to probe quantum behaviors of macroscopic mechanical oscillators. In a recent work [Phys. Rev. A 80, 043802 (2009)], we formulated a general framework for treating preparation of Gaussian quantum states of macroscopic oscillators through linear position measurements. To outline a complete procedure for testing macroscopic quantum mechanics, here we consider a subsequent verification stage which probes the prepared macroscopic quantum state and verifies the quantum dynamics. By adopting an optimal time-dependent homodyne detection in which the phase of the local oscillator varies in time, the conditional quantum state can be characterized below the Heisenberg limit, thereby achieving a quantum tomography. In the limiting case of no readout loss, such a scheme evades measurement-induced back action, which is identical to the variational-type measurement scheme invented by Vyatchanin et al. [JETP 77, 218 (1993)] but in the context for detecting gravitational waves. To motivate macroscopic quantum mechanics experiments with future gravitational-wave detectors, we mostly focus on the parameter regime where the characteristic measurement frequency is much higher than the oscillator frequency and the classical noises are Markovian, which captures the main feature of a broadband gravitational-wave detector. In addition, we discuss verifications of Einstein-Podolsky-Rosen-type entanglement between macroscopic test masses in future gravitational-wave detectors, which enables us to test one particular version of gravity decoherence conjectured by Diosi [Phys. Lett. A120, 377 (1987)] and Penrose [Gen. Rel. Grav. 28, 581 (1996)].


Classical and Quantum Gravity | 2010

The AEI 10 m prototype interferometer

S. Goßler; A. Bertolini; M. Born; Y. Chen; K. Dahl; Daniel Gering; Christian Gräf; Gerhard Heinzel; S. Hild; F. Kawazoe; O Kranz; Gerrit Kühn; H. Lück; K. Mossavi; Roman Schnabel; Kentaro Somiya; K. A. Strain; J. R. Taylor; A. Wanner; T. Westphal; B. Willke; Karsten Danzmann

A 10 m prototype interferometer facility is currently being set up at the AEI in Hannover, Germany. The prototype interferometer will be housed inside a 100 m 3 ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform interferometer. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring filters in combination with multiple-cascaded pendulum suspensions, containing an all-silica monolithic last stage. The light source is a 35 W Nd:YAG laser, geometrically filtered by passing it through a photonic crystal fibre and a rigid pre-modecleaner cavity. Laser frequency stabilisation will be achieved with the aid of a high finesse suspended reference cavity in conjunction with a molecular iodine reference. Coating thermal noise will be reduced by the use of Khalili cavities as compound end mirrors. Data acquisition and control of the experiments is based on the AdvLIGO digital control and data system. The aim of the project is to test advanced techniques for GEO 600 as well as to conduct experiments in macroscopic quantum mechanics. Reaching standard quantum-limit sensitivity for an interferometer with 100 g mirrors and subsequently breaching this limit, features most prominently among these experiments. In this paper we present the layout and current status of the AEI 10 m Prototype Interferometer project.


Physical Review A | 2010

Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator

Kazuhiro Yamamoto; D. Friedrich; T. Westphal; S. Gossler; Karsten Danzmann; Roman Schnabel; Kentaro Somiya; S. L. Danilishin

T. Westphal, D. Friedrich, H. Kaufer, K. Yamamoto, S. Goßler, H. Müller-Ebhardt, S. L. Danilishin, F. Ya. Khalili, K. Danzmann, and R. Schnabel Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), 30167 Hannover, Germany Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582, Japan Department of Physics, Moscow State University, Moscow RU-119992, RussiaQuantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN membranes (≈100 ng) with high mechanical Q values at room temperature (≥10^6) have attracted attention as low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than unity (<0.4 at a wavelength of 1064 nm) which makes the use of advanced interferometer recycling techniques to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and theoretically analyze a Michelson-Sagnac interferometer that includes the membrane as a common end mirror for the Michelson interferometer part. In this topology, both power and signal recycling can be used even if the reflectance of the membrane is much lower than unity. In particular, signal recycling is a useful tool because it does not involve a power increase at the membrane. We derive the formulas for the quantum radiation pressure noise and the shot noise of an oscillator position measurement and compare them with theoretical models of the thermal noise of a SiN membrane with a fundamental resonant frequency of 75 kHz and an effective mass of 125 ng. We find that quantum radiation pressure noise should be observable with a power of 1 W at the central beam splitter of the interferometer and a membrane temperature of 1 K.


Physical Review D | 2009

Coating thermal noise of a finite-size cylindrical mirror

Kentaro Somiya; Kazuhiro Yamamoto

Thermal noise of a mirror is one of the limiting noise sources in the high-precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the modal-expansion method with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help in analyzing thermal noise in quantum-measurement experiments with lighter mirrors.


Physical Review Letters | 2006

Interferometers for Displacement-Noise-Free Gravitational-Wave Detection

Yanbei Chen; Archana Pai; Kentaro Somiya; Seiji Kawamura; Shuichi Sato; K. Kokeyama; R. L. Ward

We propose a class of displacement- and laser-noise-free gravitational-wave-interferometer configurations, which does not sense nongeodesic mirror motion and laser noise, but provides a nonvanishing gravitational-wave signal. Our interferometers consist of four mirrors and two beam splitters, which form four Mach-Zehnder interferometers. By contrast to previous works, no composite mirrors with multiple reflective surfaces are required. Each mirror in our configuration is sensed redundantly, by at least two pairs of incident and reflected beams. Displacement- and laser-noise-free detection is achieved when output signals from these four interferometers are combined appropriately. Our 3-dimensional interferometer configuration has a low-frequency response proportional to f2, which is better than the f3 achievable by previous 2-dimensional configurations.

Collaboration


Dive into the Kentaro Somiya's collaboration.

Top Co-Authors

Avatar

Yanbei Chen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Hild

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge