Kenya Honda
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenya Honda.
Cell | 2009
Ivaylo I. Ivanov; Koji Atarashi; Nicolas Manel; Eoin L. Brodie; Tatsuichiro Shima; Ulas Karaoz; Dongguang Wei; Katherine C. Goldfarb; Clark A. Santee; Susan V. Lynch; Takeshi Tanoue; Akemi Imaoka; Kikuji Itoh; Kiyoshi Takeda; Yoshinori Umesaki; Kenya Honda; Dan R. Littman
The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4(+) T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation and antimicrobial defenses and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Thus, manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
Science | 2011
Koji Atarashi; Takeshi Tanoue; Tatsuichiro Shima; Akemi Imaoka; Tomomi Kuwahara; Yoshika Momose; Genhong Cheng; Sho Yamasaki; Takashi Saito; Yusuke Ohba; Tadatsugu Taniguchi; Kiyoshi Takeda; Shohei Hori; Ivaylo I. Ivanov; Yoshinori Umesaki; Kikuji Itoh; Kenya Honda
Bacteria of the genus Clostridium promote the induction of suppressor T cells in the colons of mice. CD4+ T regulatory cells (Tregs), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, Tregs were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted Treg cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor–β and affected Foxp3+ Treg number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.
Nature | 2005
Kenya Honda; Hideyuki Yanai; Hideo Negishi; Masataka Asagiri; Mitsuharu Sato; Tatsuaki Mizutani; Naoya Shimada; Yusuke Ohba; Akinori Takaoka; Nobuaki Yoshida; Tadatsugu Taniguchi
The type-I interferon (IFN-α/β) response is critical to immunity against viruses and can be triggered in many cell types by cytosolic detection of viral infection, or in differentiated plasmacytoid dendritic cells by the Toll-like receptor 9 (TLR9) subfamily, which generates signals via the adaptor MyD88 to elicit robust IFN induction. Using mice deficient in the Irf7 gene (Irf7-/- mice), we show that the transcription factor IRF-7 is essential for the induction of IFN-α/β genes via the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Viral induction of MyD88-independent IFN-α/β genes is severely impaired in Irf7-/- fibroblasts. Consistently, Irf7-/- mice are more vulnerable than Myd88-/- mice to viral infection, and this correlates with a marked decrease in serum IFN levels, indicating the importance of the IRF-7-dependent induction of systemic IFN responses for innate antiviral immunity. Furthermore, robust induction of IFN production by activation of the TLR9 subfamily in plasmacytoid dendritic cells is entirely dependent on IRF-7, and this MyD88–IRF-7 pathway governs the induction of CD8+ T-cell responses. Thus, all elements of IFN responses, whether the systemic production of IFN in innate immunity or the local action of IFN from plasmacytoid dendritic cells in adaptive immunity, are under the control of IRF-7.
Nature | 2013
Yukihiro Furusawa; Yuuki Obata; Shinji Fukuda; Takaho A. Endo; Gaku Nakato; Daisuke Takahashi; Yumiko Nakanishi; Chikako Uetake; Keiko Kato; Tamotsu Kato; Masumi Takahashi; Noriko N. Fukuda; Shinnosuke Murakami; Eiji Miyauchi; Shingo Hino; Koji Atarashi; Satoshi Onawa; Yumiko Fujimura; Trevor Lockett; Julie M. Clarke; David L. Topping; Masaru Tomita; Shohei Hori; Osamu Ohara; Tatsuya Morita; Haruhiko Koseki; Jun Kikuchi; Kenya Honda; Koji Hase; Hiroshi Ohno
Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4+ CD45RBhi T cells in Rag1−/− mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host–microbe interactions establish immunological homeostasis in the gut.
Nature | 2007
Akinori Takaoka; ZhiChao Wang; Myoung Kwon Choi; Hideyuki Yanai; Hideo Negishi; Tatsuma Ban; Yan Lu; Makoto Miyagishi; Tatsuhiko Kodama; Kenya Honda; Yusuke Ohba; Tadatsugu Taniguchi
Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.
Nature Reviews Immunology | 2006
Kenya Honda; Tadatsugu Taniguchi
The interferon-regulatory factor (IRF) family of transcription factors was initially found to be involved in the induction of genes that encode type I interferons. IRFs have now been shown to have functionally diverse roles in the regulation of the immune system. Recently, the crucial involvement of IRFs in innate and adaptive immune responses has been gaining much attention, particularly with the discovery of their role in immunoregulation by Toll-like receptors and other pattern-recognition receptors.
Nature | 2013
Koji Atarashi; Takeshi Tanoue; Kenshiro Oshima; Wataru Suda; Yuji Nagano; Hiroyoshi Nishikawa; Shinji Fukuda; Takuro Saito; Seiko Narushima; Koji Hase; Sangwan Kim; Joëlle V. Fritz; Paul Wilmes; Satoshi Ueha; Kouji Matsushima; Hiroshi Ohno; Bernat Olle; Shimon Sakaguchi; Tadatsugu Taniguchi; Hidetoshi Morita; Masahira Hattori; Kenya Honda
Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4+FOXP3+ regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules—including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)—in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-β-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.
Nature | 2008
Koji Atarashi; Junichi Nishimura; Tatsuichiro Shima; Yoshinori Umesaki; Masahiro Yamamoto; Masaharu Onoue; Hideo Yagita; Naoto Ishii; Richard J. Evans; Kenya Honda; Kiyoshi Takeda
Interleukin (IL)-17-producing CD4+ T lymphocytes (TH17 cells) constitute a subset of T-helper cells involved in host defence and several immune disorders. An intriguing feature of TH17 cells is their selective and constitutive presence in the intestinal lamina propria. Here we show that adenosine 5′-triphosphate (ATP) that can be derived from commensal bacteria activates a unique subset of lamina propria cells, CD70highCD11clow cells, leading to the differentiation of TH17 cells. Germ-free mice exhibit much lower concentrations of luminal ATP, accompanied by fewer lamina propria TH17 cells, compared to specific-pathogen-free mice. Systemic or rectal administration of ATP into these germ-free mice results in a marked increase in the number of lamina propria TH17 cells. A CD70highCD11clow subset of the lamina propria cells expresses TH17-prone molecules, such as IL-6, IL-23p19 and transforming-growth-factor-β-activating integrin-αV and -β8, in response to ATP stimulation, and preferentially induces TH17 differentiation of co-cultured naive CD4+ T cells. The critical role of ATP is further underscored by the observation that administration of ATP exacerbates a T-cell-mediated colitis model with enhanced TH17 differentiation. These observations highlight the importance of commensal bacteria and ATP for TH17 differentiation in health and disease, and offer an explanation of why TH17 cells specifically present in the intestinal lamina propria.
Nature | 2005
Akinori Takaoka; Hideyuki Yanai; Seiji Kondo; Gordon S. Duncan; Hideo Negishi; Tatsuaki Mizutani; Shin Ichi Kano; Kenya Honda; Yusuke Ohba; Tak W. Mak; Tadatsugu Taniguchi
The activation of Toll-like receptors (TLRs) is central to innate and adaptive immunity. All TLRs use the adaptor MyD88 for signalling, but the mechanisms underlying the MyD88-mediated gene induction programme are as yet not fully understood. Here, we demonstrate that the transcription factor IRF-5 is generally involved downstream of the TLR–MyD88 signalling pathway for gene induction of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-12 and tumour-necrosis factor-α. In haematopoietic cells from mice deficient in the Irf5 gene (Irf5-/- mice), the induction of these cytokines by various TLR ligands is severely impaired, whereas interferon-α induction is normal. We also provide evidence that IRF-5 interacts with and is activated by MyD88 and TRAF6, and that TLR activation results in the nuclear translocation of IRF-5 to activate cytokine gene transcription. Consistently, Irf5-/- mice show resistance to lethal shock induced by either unmethylated DNA or lipopolysaccharide, which correlates with a marked decrease in the serum levels of proinflammatory cytokines. Thus, our study identifies IRF-5 as a new, principal downstream regulator of the TLR–MyD88 signalling pathway and a potential target of therapeutic intervention to control harmful immune responses.
Nature | 2005
Kenya Honda; Yusuke Ohba; Hideyuki Yanai; Hideo Negishi; Tatsuaki Mizutani; Akinori Takaoka; Choji Taya; Tadatsugu Taniguchi
Robust type-I interferon (IFN-α/β) induction in plasmacytoid dendritic cells, through the activation of Toll-like receptor 9 (TLR9), constitutes a critical aspect of immunity. It is absolutely dependent on the transcription factor IRF-7, which interacts with and is activated by the adaptor MyD88. How plasmacytoid dendritic cells, but not other cell types (such as conventional dendritic cells), are able to activate the MyD88–IRF-7-dependent IFN induction pathway remains unknown. Here we show that the spatiotemporal regulation of MyD88–IRF-7 signalling is critical for a high-level IFN induction in response to TLR9 activation. The IFN-inducing TLR9 ligand, A/D-type CpG oligodeoxynucleotide (CpG-A), is retained for long periods in the endosomal vesicles of plasmacytoid dendritic cells, together with the MyD88–IRF-7 complex. However, in conventional dendritic cells, CpG-A is rapidly transferred to lysosomal vesicles. We further show that conventional dendritic cells can also mount a robust IFN induction if CpG-A is manipulated for endosomal retention using a cationic lipid. This strategy also allows us to demonstrate endosomal activation of the IFN pathway by the otherwise inactive TLR9 ligand B/K-type oligodeoxynucleotide (CpG-B). Thus, our study offers insights into the regulation of TLR9 signalling in space, potentially suggesting a new avenue for therapeutic intervention.