Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenzo Asaoka is active.

Publication


Featured researches published by Kenzo Asaoka.


Journal of Biomedical Materials Research | 1997

Early bone formation around calcium‐ion‐implanted titanium inserted into rat tibia

Takao Hanawa; Yohji Kamiura; Satoru Yamamoto; Takao Kohgo; Akira Amemiya; Hidemi Ukai; Koichi Murakami; Kenzo Asaoka

Rat tibia tissue into which calcium ion (Ca2+)-implanted titanium was surgically placed was histologically analyzed to investigate the performance of the Ca(2+)-implanted titanium as a biomaterial. Calcium ions were implanted into only one side of titanium plates at 10(17) ions/cm2 and the Ca(2+)-treated titanium was surgically implanted into rat tibia for 2, 8, and 18 days. Tetracycline and calcein were used as hard-tissue labels. After excision of the tibia, the tissues were fixed, stained, embedded in polymethyl methacrylate, and sliced. The specimens were observed using a fluorescence microscope. A larger amount of new bone was formed on the Ca(2+)-treated side than on the untreated side, even at 2 days after surgery. In addition, part of the bone made contact with the Ca2(+)-treated surface. On the other hand, bone formation on the untreated side was delayed and the bone did not make contact with the surface. Mature bone with bone marrow formed in 8 days. Neither macrophage nor inflammatory cell infiltration was observed. The results indicated that Ca(2+)-implanted titanium is superior to titanium alone for bone conduction.


Biomaterials | 1995

Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate.

Kunio Ishikawa; Youji Miyamoto; Masayuki Kon; Masaru Nagayama; Kenzo Asaoka

Non-decay type fast-setting calcium phosphate cement (nd-FSCPC) was prepared by introducing sodium alginate (0-2.0 wt%) into the liquid phase of FSCPC. nd-FSCPC was stable even when the cement paste was immersed in distilled water immediately after mixing, whereas conventional FSCPC (c-FSCPC) decayed completely within 1 min upon immersion. The setting time of the cement, approximately 5 min, was not dependent on the presence of sodium alginate. In contrast, the introduction of sodium alginate into conventional CPC, i.e. CPC without neutral phosphate in the liquid phase, resulted in no setting when the amount of sodium alginate introduced was more than 1 wt%. Powder X-ray diffraction analysis revealed no significant difference for the conversion of cement to apatite for any concentrations of sodium alginate studied (0-2.0 wt%). The mechanical strength of the cement increased rapidly with the addition of sodium alginate up to 0.8 wt% when the cement paste was immersed and kept in distilled water at 37 degrees C, whereas further addition of sodium alginate decreased the mechanical strength. The results obtained in this investigation, taken together with sodium alginates known excellent biocompatibility and absorption behaviour, indicate that the use of sodium alginate composite FSCPC as nd-FSCPC should be of value in orthodontics and oral and maxillofacial surgery where the cement is exposed to blood.


Biomaterials | 1995

In vivo setting behaviour of fast-setting calcium phosphate cement

Youji Miyamoto; Kunio Ishikawa; Hirokazu Fukao; Masahiro Sawada; Masaru Nagayama; Masayuki Kon; Kenzo Asaoka

The in vivo setting behaviour of fast-setting calcium phosphate cement (FSCPC) between femoral muscles of the rat was investigated to evaluate the possible value of FSCPC for medical and dental application. Conventional CPC (c-CPC) and FSCPC were implanted between femoral muscles, and various aspects of the setting behaviour such as setting time, mechanical strength and conversion ratio of cement into hydroxyapatite (HAP: Ca10(PO4)6(OH)2) were measured by the Vicat needle method, diametral tensile strength (DTS) measurement, and quantitative powder X-ray diffraction (XRD) analysis, respectively. The setting time of FSCPC in vivo was 5-7 min, in contrast to 48 min for c-CPC. As a result of its fast setting, set specimens of FSCPC showed higher mechanical strength from the initial stage than c-CPC. Higher DTS values were observed in FSCPC than c-CPC implanted after 24 h. Powder XRD analysis revealed faster conversion of FSCPC than c-CPC into HAP, which was responsible both for the faster setting and higher mechanical strength from the initial stage. We concluded, therefore, that FSCPC may be used for a wide range of clinical applications, i.e. fields where fast setting is required such as orthopaedic, plastic and reconstructive, and oral and maxillofacial surgery.


Journal of Biomedical Materials Research | 1997

Non-decay type fast-setting calcium phosphate cement: Hydroxyapatite putty containing an increased amount of sodium alginate

Kunio Ishikawa; Youji Miyamoto; Masaaki Takechi; Tomotake Toh; Masayuki Kon; Masaru Nagayama; Kenzo Asaoka

A hydroxyapatite [(HAP) Ca10(PO4)6(OH)2] putty that behaves like a putty or self-curing resin was made by increasing the amount of sodium alginate in non-decay type fast-setting calcium phosphate cement (nd-FSCPC). nd-FSCPC became viscous as the sodium alginate concentration was increased. The best handling properties were obtained when nd-FSCPC contained 8% sodium alginate in its liquid phase. When a 2-kg glass plate was placed on the paste, HAP putty spread to form an area three times that of FSCPC paste. Thus, HAP putty is expected to be easier to use than FSCPC in the filling of bone defects. HAP putty did not decay; in fact, it set within approximately 20 min when immersed in distilled water immediately after mixing. The wet diametral tensile strength value of HAP putty was approximately 12 MPa after 24 h, the same as that for nd-FSCPC containing 0.5% sodium alginate in its liquid phase, or FSCPC that is free from sodium alginate. The elements constituting set HAP putty were examined using powder X-ray diffraction and found to be predominantly apatitic minerals after 24 h. Since the handling properties of a putty or self-curing resin-like cement are very useful in certain surgical procedures, HAP putty made by increasing the sodium alginate concentration in nd-FSCPC is potentially a valuable new biomaterial for use in plastic and reconstructive surgery, as well as oral and maxillofacial surgery.


Biomaterials | 2002

Fracture mechanisms of retrieved titanium screw thread in dental implant

Ken’ichi Yokoyama; Tetsuo Ichikawa; Hiroki Murakami; Youji Miyamoto; Kenzo Asaoka

Titanium and its alloy are increasingly attracting attention for use as biomaterials. However, delayed fracture of titanium dental implants has been reported, and factors affecting the acceleration of corrosion and fatigue have to be determined. The fractured surface of a retrieved titanium screw and metallurgical structures of a dental implant system were analyzed. The outer surface of the retrieved screw had a structure different from that of the as-received screw. It was confirmed that a shear crack initiated at the root of the thread and propagated into the inner section of the screw. Gas chromatography revealed that the retrieved screw had absorbed a higher amount of hydrogen than the as-received sample. The grain structure of a titanium screw, immersed in a solution known to induce hydrogen absorption, showed features similar to those of the retrieved screw. It was concluded that titanium in a biological environment absorbs hydrogen and this may be the reason for delayed fracture of a titanium implant.


Journal of Biomedical Materials Research | 1998

Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement.

Masaaki Takechi; Youji Miyamoto; Kunio Ishikawa; Masaru Nagayama; Masayuki Kon; Kenzo Asaoka; Kazuomi Suzuki

The effect of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement (aw-FSCPC) was investigated in a preliminary evaluation of aw-FSCPC containing drugs. Flomoxef sodium was employed as the antibiotic and was incorporated into the powder-phase aw-FSCPC at up to 10%. The setting time, consistency, wet diametral tensile strength (DTS) value, and porosity were measured for aw-FSCPC containing various amounts of flomoxef sodium. X-ray diffraction (XRD) analysis was also conducted for the identification of products. To evaluate the drug-release profile, set aw-FSCPC was immersed in saline and the released flomoxef sodium was determined at regular intervals. The spread area of the cement paste as an index of consistency of the cement increased progressively with the addition of flomoxef sodium, and it doubled when the aw-FSCPC contained 8% flomoxef sodium. In contrast, the wet DTS value decreased with increase in flomoxef sodium content. Bulk density measurement and scanning electron microscopic observation revealed that the set mass was more porous with the amount of flomoxef sodium contained in the aw-FSCPC. The XRD analysis revealed that formation of hydroxyapatite (HAP) from aw-FSCPC was reduced even after 24 h, when the aw-FSCPC contained flomoxef sodium at > or = 6%. Therefore, the decrease of wet DTS value was thought to be partly the result of the increased porosity and inhibition of HAP formation in aw-FSCPC containing large amounts of flomoxef sodium. The flomoxef sodium release from aw-FSCPC showed the typical profile observed in a skeleton-type drug delivery system (DDS). The rate of drug release from aw-FSCPC can be controlled by changing the concentration of sodium alginate. Although flomoxef sodium addition has certain disadvantageous effects on the basic properties of aw-FSCPC, we conclude that aw-FSCPC is a good candidate for potential use as a DDS carrier that may be useful in surgical operations.


Journal of Biomedical Materials Research | 1997

Tissue response to fast-setting calcium phosphate cement in bone

Youji Miyamoto; Kunio Ishikawa; Masaaki Takechi; Taketomo Toh; Yuki Yoshida; Masaru Nagayama; Masayuki Kon; Kenzo Asaoka

Fast-setting calcium phosphate cement (FSCPC) is a promising new bioactive cement with a significantly short setting time (approximately 5-6 min) compared to conventional calcium phosphate cement (c-CPC) (30-60 min) at physiologic temperatures. As a result of its ability to set quickly, it is applicable in surgical procedures where fast setting is required. In this study, FSCPC was implanted in rat tibiae to evaluate tissue response and biocompatibility. FSCPC was converted to hydroxyapatite (HAP) in bone faster than c-CPC in the first 6 h. By 24 h, significant amounts of both FSCPC and c-CPC had been converted to HAP. The conversion of FSCPC into HAP further proceeded gradually, reaching 100% within 8 weeks. Infrared spectroscopic analysis disclosed the deposition of B-type carbonate apatite, which is a biological apatite contained in human dentin or bone, on the surface of the FSCPC. Histologically, FSCPC showed a tissue response similar to that of c-CPC. A slight inflammatory reaction was observed in the soft tissue apposed to both cements in the early period, and new bone was formed along the surface of the FSCPC at the adjacent bone. However, no resorption of either cement by osteoclasts or macrophages was observed within 8 weeks. We conclude that FSCPC is superior to c-CPC in clinical applications in oral and maxillofacial, orthopedic, plastic, and reconstructive surgery, since it shows a faster setting time and higher mechanical strength in the early period that are required in these surgical procedures, as well as osteoconductivity and excellent biocompatibility similar to that of c-CPC.


Biomaterials | 2001

Degradation and fracture of Ni-Ti superelastic wire in an oral cavity.

Ken’ichi Yokoyama; Kenichi Hamada; Keiji Moriyama; Kenzo Asaoka

Superelastic Ni-Ti wire is widely used in orthodontic clinics, but delayed fracture in the oral cavity has been observed. Because hydrogen embrittlement is known to cause damage to Ti alloy systems, orthodontic wires were charged with hydrogen using an electro-chemical system in saline. Tensile tests were carried out, and fracture surfaces were observed after hydrogen charging. The strength of the Co-Cr alloy and stainless steel used in orthodontic treatment, was not affected by the hydrogen charging. However, Ni-Ti wire showed significant decreases in strength. The critical stress of martensite transformation was increased with increasing hydrogen charging, and the alloy was embrittled. The fractured surface of the alloys with severe hydrogen charging exhibited dimple patterns similar to those in the alloys from patients. In view of the galvanic current in the mouth, the fracture of the Ni-Ti alloys might be attributed to the degradation of the mechanical properties due to hydrogen absorption.


Journal of Materials Science: Materials in Medicine | 1998

AMOUNT OF HYDROXYL RADICAL ON CALCIUM-ION-IMPLANTED TITANIUM AND POINT OF ZERO CHARGE OF CONSTITUENT OXIDE OF THE SURFACE-MODIFIED LAYER

Takao Hanawa; Masayuki Kon; Hisashi Doi; Hidemi Ukai; Murakami K; Hitoshi Hamanaka; Kenzo Asaoka

To compare the surface properties of calcium-ion (Ca2+)-implanted titanium with those of titanium and to investigate the mechanism of bone conductivity of Ca2+-implanted titanium, amounts of hydroxyl radical of Ca2+-implanted titanium and titanium were estimated. Also, the point of zero charge (p.z.c.) of oxide constituting surface oxides of Ca2+-implanted titanium and titanium was determined. Results showed that the amount of active hydroxyl radical on Ca2+-implanted titanium was found to be significantly larger than that on titanium, indicating that the number of electric-charging sites of Ca2+-implanted titanium in electrolyte is more than that of titanium. The p.z.c. values of rutile (TiO2), anatase (TiO2), and perovskite (CaTiO3), were estimated to be 4.6, 5.9, and 8.1, respectively. Thus, Ca2+-implanted titanium surface is charged more positively in bioliquid than titanium, accelerating the adsorption of phosphate ions.


Biomaterials | 2003

Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions

Kazuyuki Kaneko; Ken’ichi Yokoyama; Keiji Moriyama; Kenzo Asaoka; Jun’ichi Sakai; Michihiko Nagumo

Hydrogen embrittlement of a beta titanium orthodontic wire has been examined by means of a delayed-fracture test in acid and neutral fluoride aqueous solutions and hydrogen thermal desorption analysis. The time to fracture increased with decreasing applied stress in 2.0% and 0.2% acidulated phosphate fluoride (APF) solutions. The fracture mode changed from ductile to brittle when the applied stress was lower than 500MPa in 2.0% APF solution. On the other hand, the delayed fracture did not occur within 1000h in neutral NaF solutions, although general corrosion was also observed similar to that in APF solutions. Hydrogen desorption of the delayed-fracture-tested specimens was observed with a peak at approximately 500 degrees C. The amount of absorbed hydrogen was 5000-6500 mass ppm under an applied stress in 2.0% APF solution for 24h. It is concluded that the immersion in fluoride solutions leads to the degradation of the mechanical properties and fracture of beta titanium alloy associated with hydrogen absorption.

Collaboration


Dive into the Kenzo Asaoka's collaboration.

Top Co-Authors

Avatar

Masayuki Kon

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Ken’ichi Yokoyama

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Hanawa

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge