Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keqiang Ye is active.

Publication


Featured researches published by Keqiang Ye.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone

Sung-Wuk Jang; Xia Liu; Manuel Yepes; Kennie R. Shepherd; Gary W. Miller; Yang Liu; W. David Wilson; Ge Xiao; Bruno Blanchi; Yi E. Sun; Keqiang Ye

Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes receptor dimerization and autophosphorylation and activation of downstream signaling. 7,8-Dihydroxyflavone protected wild-type, but not TrkB-deficient, neurons from apoptosis. Administration of 7,8-dihydroxyflavone to mice activated TrkB in the brain, inhibited kainic acid-induced toxicity, decreased infarct volumes in stroke in a TrkB-dependent manner, and was neuroprotective in an animal model of Parkinson disease. Thus, 7,8-dihydroxyflavone imitates BDNF and acts as a robust TrkB agonist, providing a powerful therapeutic tool for the treatment of various neurological diseases.


Neuron | 2000

Dexras1: A G protein specifically coupled to neuronal nitric oxide synthase via CAPON

Ming Fang; Samie R. Jaffrey; Akira Sawa; Keqiang Ye; Xiaojiang Luo; Solomon H. Snyder

Because nitric oxide (NO) is a highly reactive signaling molecule, chemical inactivation by reaction with oxygen, superoxide, and glutathione competes with specific interactions with target proteins. NO signaling may be enhanced by adaptor proteins that couple neuronal NO synthase (nNOS) to specific target proteins. Here we identify a selective interaction of the nNOS adaptor protein CAPON with Dexras1, a brain-enriched member of the Ras family of small monomeric G proteins. We find that Dexras1 is activated by NO donors as well as by NMDA receptor-stimulated NO synthesis in cortical neurons. The importance of Dexras1 as a physiologic target of nNOS is established by the selective decrease of Dexras1 activation, but not H-Ras or four other Ras family members, in the brains of mice harboring a targeted genomic deletion of nNOS (nNOS-/-). We also find that nNOS, CAPON, and Dexras1 form a ternary complex that enhances the ability of nNOS to activate Dexras1. These findings identify Dexras1 as a novel physiologic NO effector and suggest that anchoring of nNOS to specific targets is a mechanism by which NO signaling is enhanced.


Nature Neuroscience | 2003

PI3 kinase enhancer–Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis

Rong Rong; Jee-Yin Ahn; Honglian Huang; Eiichiro Nagata; Daniel Kalman; Judith A. Kapp; Jiancheng Tu; Paul F. Worley; Solomon H. Snyder; Keqiang Ye

Phosphoinositide 3 kinase enhancer (PIKE) is a recently identified nuclear GTPase that activates nuclear phosphoinositide 3-kinase (PI3 kinase). We have identified, cloned and characterized a new form of PIKE, designated PIKE-L, which, unlike the nuclear PIKE-S, localizes to both the cytoplasm and the nucleus. We demonstrate physiologic binding of PIKE-L to Homer, an adaptor protein known to link metabotropic glutamate receptors to multiple intracellular targets including the inositol 1,4,5-trisphosphate receptor (IP3R). We show that activation of group I metabotropic glutamate receptors (mGluRIs) enhances formation of an mGluRI-Homer-PIKE-L complex, leading to activation of PI3 kinase activity and prevention of neuronal apoptosis. Our findings indicate that this complex mediates the well-known ability of agonists of mGluRI to prevent neuronal apoptosis.


The Journal of Neuroscience | 2010

Excess Phosphoinositide 3-Kinase Subunit Synthesis and Activity as a Novel Therapeutic Target in Fragile X Syndrome

Christina Gross; Mika Nakamoto; Xiaodi Yao; Chi Bun Chan; So Y. Yim; Keqiang Ye; Stephen T. Warren; Gary J. Bassell

Fragile X syndrome (FXS) is an inherited neurologic disease caused by loss of fragile X mental retardation protein (FMRP), which is hypothesized to mediate negative regulation of mRNA translation at synapses. A prominent feature of FXS animal models is exaggerated signaling through group 1 metabotropic glutamate receptors (gp1 mGluRs), and therapeutic strategies to treat FXS are targeted mainly at gp1 mGluRs. Recent studies, however, indicate that a variety of receptor-mediated signal transduction pathways are dysregulated in FXS, suggesting that FMRP acts on a common downstream signaling molecule. Here, we show that deficiency of FMRP results in excess activity of phosphoinositide 3-kinase (PI3K), a downstream signaling molecule of many cell surface receptors. In Fmr1 knock-out neurons, excess synaptic PI3K activity can be reduced by perturbation of gp1 mGluR-mediated signaling. Remarkably, increased PI3K activity was also observed in FMRP-deficient non-neuronal cells in the absence of gp1 mGluRs. Here, we show that FMRP regulates the synthesis and synaptic localization of p110β, the catalytic subunit of PI3K. In wild type, gp1 mGluR activation induces p110β translation, p110β protein expression, and PI3K activity. In contrast, both p110β protein synthesis and PI3K activity are elevated and insensitive to gp1 mGluR stimulation in Fmr1 knock-out. This suggests that dysregulated PI3K signaling may underlie the synaptic impairments in FXS. In support of this hypothesis, we show that PI3K antagonists rescue three FXS-associated phenotypes: dysregulated synaptic protein synthesis, excess AMPA receptor internalization, and increased spine density. Targeting excessive PI3K activity might thus be a potent therapeutic strategy for FXS.


Cell | 2003

Inositol Pyrophosphates Mediate Chemotaxis in Dictyostelium via Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interactions

Hongbo R. Luo; Yi Elaine Huang; Jianmeng C Chen; Adolfo Saiardi; Miho Iijima; Keqiang Ye; Yunfei Huang; Eiichiro Nagata; Peter N. Devreotes; Solomon H. Snyder

Inositol phosphates are well-known signaling molecules, whereas the inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (InsP7/IP7) and bis-diphosphoinositol tetrakisphosphate (InsP8/IP8), are less well characterized. We demonstrate physiologic regulation of Dictyostelium chemotaxis by InsP7 mediated by its competition with PtdIns(3,4,5)P3 for binding pleckstrin homology (PH) domain-containing proteins. Chemoattractant stimulation triggers rapid and sustained elevations in InsP7/InsP8 levels. Depletion of InsP7 and InsP8 by deleting the gene for InsP6 kinase (InsP6K/IP6K), which converts inositol hexakisphosphate (InsP6/IP6) to InsP7, causes rapid aggregation of mutant cells and increased sensitivity to cAMP. Chemotaxis is mediated by membrane translocation of certain PH domain-containing proteins via specific binding to PtdIns(3,4,5)P3. InsP7 competes for PH domain binding with PtdIns(3,4,5)P3 both in vitro and in vivo. InsP7 depletion enhances PH domain membrane translocation and augments downstream chemotactic signaling activity.


Nature | 2002

Phospholipase Cγ1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE

Keqiang Ye; Bahman Aghdasi; Hongbo R. Luo; John L. Moriarity; Frederick Y. Wu; Jenny J. Hong; K. Joseph Hurt; Sun Sik Bae; Pann Ghill Suh; Solomon H. Snyder

Phospholipase Cγ1 (PLC-γ1) hydrolyses phosphatidylinositol-4,5-bisphosphate to the second messengers inositol-1,4,5-trisphosphate and diacylglycerol. PLC-γ1 also has mitogenic activity upon growth-factor-dependent tyrosine phophorylation; however, this activity is not dependent on the phospholipase activity of PLC-γ1, but requires an SH3 domain. Here, we demonstrate that PLC-γ1 acts as a guanine nucleotide exchange factor (GEF) for PIKE (phosphatidylinositol-3-OH kinase (PI(3)K) enhancer). PIKE is a nuclear GTPase that activates nuclear PI(3)K activity, and mediates the physiological activation by nerve growth factor (NGF) of nuclear PI(3)K activity. This enzymatic activity accounts for the mitogenic properties of PLC-γ1.


Cancer Cell | 2012

Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth

Taro Hitosugi; Lu Zhou; Shannon Elf; Jun Fan; Hee Bum Kang; Jae Ho Seo; Changliang Shan; Qing Dai; Liang Zhang; Jianxin Xie; Ting Lei Gu; Peng Jin; Maša Alečković; Gary LeRoy; Yibin Kang; Jessica Sudderth; Ralph J. DeBerardinis; Chi Hao Luan; Georgia Z. Chen; Susan Muller; Dong M. Shin; Taofeek K. Owonikoko; Sagar Lonial; Martha Arellano; Hanna Jean Khoury; Fadlo R. Khuri; Benjamin H. Lee; Keqiang Ye; Titus J. Boggon; Sumin Kang

It is unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation in part by controlling intracellular levels of its substrate, 3-phosphoglycerate (3-PG), and product, 2-phosphoglycerate (2-PG). 3-PG binds to and inhibits 6-phosphogluconate dehydrogenase in the oxidative pentose phosphate pathway (PPP), while 2-PG activates 3-phosphoglycerate dehydrogenase to provide feedback control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small molecule inhibitor PGMI-004A results in increased 3-PG and decreased 2-PG levels in cancer cells, leading to significantly decreased glycolysis, PPP flux and biosynthesis, as well as attenuated cell proliferation and tumor growth.


American Journal of Psychiatry | 2011

Effect of 7,8-Dihydroxyflavone, a Small-Molecule TrkB Agonist, on Emotional Learning

Raül Andero; Scott A. Heldt; Keqiang Ye; Xia Liu; Antonio Armario; Kerry J. Ressler

OBJECTIVE Despite increasing awareness of the many important roles played by brain-derived neurotrophic factor (BDNF) activation of TrkB, a fuller understanding of this system and the use of potential TrkB-acting therapeutic agents has been limited by the lack of any identified small-molecule TrkB agonists that fully mimic the actions of BDNF at brain TrkB receptors in vivo. However, 7,8-dihydroxyflavone (7,8-DHF) has recently been identified as a specific TrkB agonist that crosses the blood-brain barrier after oral or intraperitoneal administration. The authors combined pharmacological, biochemical, and behavioral approaches in a preclinical study examining the role of 7,8-DHF in modulating emotional memory in mice. METHOD The authors first examined the ability of systemic 7,8-DHF to activate TrkB receptors in the amygdala. They then examined the effects of systemic 7,8-DHF on acquisition and extinction of conditioned fear, using specific and well-characterized BDNF-dependent learning paradigms in several models using naive mice and mice with prior traumatic stress exposure. RESULTS Amygdala TrkB receptors, which have previously been shown to be required for emotional learning, were activated by systemic 7,8-DHF (at 5 mg/kg i.p.). 7,8-DHF enhanced both the acquisition of fear and its extinction. It also appeared to rescue an extinction deficit in mice with a history of immobilization stress. CONCLUSIONS These data suggest that 7,8-DHF may be an excellent agent for use in understanding the effects of TrkB activation in learning and memory paradigms and may be attractive for use in reversing learning and extinction deficits associated with psychopathology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear

Dennis C. Choi; Kimberly A. Maguschak; Keqiang Ye; Sung-Wuk Jang; Karyn M. Myers; Kerry J. Ressler

In the medial prefrontal cortex, the prelimbic area is emerging as a major modulator of fear behavior, but the mechanisms remain unclear. Using a selective neocortical knockout mouse, virally mediated prelimbic cortical-specific gene deletion, and pharmacological rescue with a TrkB agonist, we examined the role of a primary candidate mechanism, BDNF, in conditioned fear. We found consistently robust deficits in consolidation of cued fear but no effects on acquisition, expression of unlearned fear, sensorimotor function, and spatial learning. This deficit in learned fear in the BDNF knockout mice was rescued with systemic administration of a TrkB receptor agonist, 7,8-dihydroxyflavone. These data indicate that prelimbic BDNF is critical for consolidation of learned fear memories, but it is not required for innate fear or extinction of fear. Moreover, use of site-specific, inducible BDNF deletions shows a powerful mechanism that may further our understanding of the pathophysiology of fear-related disorders.


Molecular and Cellular Biology | 2007

Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase-Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation

Xuerong Wang; Ping Yue; Chi Bun Chan; Keqiang Ye; Takeshi Ueda; Rie Watanabe-Fukunaga; Rikiro Fukunaga; Haian Fu; Fadlo R. Khuri; Shi-Yong Sun

ABSTRACT The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors’ effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycins ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation.

Collaboration


Dive into the Keqiang Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbo R. Luo

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhixue Liu

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Zhi Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Solomon H. Snyder

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge