Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kequan Pei is active.

Publication


Featured researches published by Kequan Pei.


Ecological Monographs | 2011

Community assembly during secondary forest succession in a Chinese subtropical forest

Helge Bruelheide; Martin Böhnke; Sabine Both; Teng Fang; Thorsten Assmann; Martin Baruffol; Jürgen Bauhus; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Markus Fischer; Christian Geißler; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Andy Hector; Wenzel Kröber; Peter Kühn; Anne C. Lang; Karin Nadrowski; Kequan Pei; Michael Scherer-Lorenzen; Xuezheng Shi; Thomas Scholten; Andreas Schuldt; Stefan Trogisch; Goddert von Oheimb

Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30 × 30 m plots (n = 27) from five successional stages ( 1 m in height in each plot and counted all woody recruits (bank of all seedlings ≤1 m in height) in each central 10 × 10 m quadrant of each plot. In addition, we measured a number of environmen...


Methods in Ecology and Evolution | 2014

Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China

Helge Bruelheide; Karin Nadrowski; Thorsten Assmann; Jürgen Bauhus; Sabine Both; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Jessica L. M. Gutknecht; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Alexandra-Maria Klein; Peter Kühn; Yu Liang; Xiaojuan Liu; Stefan G. Michalski; Pascal A. Niklaus; Kequan Pei; Michael Scherer-Lorenzen; Thomas Scholten; Andreas Schuldt; Gunnar Seidler; Stefan Trogisch; Goddert von Oheimb; Erik Welk; Christian Wirth

Summary 1. Biodiversity–ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25� 8 9 25� 8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ‘ecoscape’ to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achiev


Plant and Cell Physiology | 2011

UV Radiation-Responsive Proteins in Rice Leaves: A Proteomic Analysis

Hongmei Du; Yu Liang; Kequan Pei; Keping Ma

Depletion of stratospheric ozone has led to increased UV radiation reaching the surface of the Earth. This may damage plants. Using physiological, proteomic and quantitative real-time PCR (qPCR) methods, we systematically studied the response of 16-day-old rice seedlings to UV [0.67 W m(-2) biologically effective UVB (UVB(BE)) and 0.28 W m(-2) UVA] exposure for 6, 12 and 24 h. UV exposure resulted in the appearance of light brown patches on leaves, a decrease in the net photosynthetic rate (Pn), lipid peroxidation, accumulation of UV-absorbing compounds (including flavonoids and other phenolic pigments) and differential expression of 22 proteins. Both physiological and molecular responses became stronger with increasing UV exposure time, indicating the effects of UV accumulation on plants. UV-induced responses included (i) phytohormone-regulative responses (up-regulation of proteins related to phytohormone synthesis such as IAA and ethylene); (ii) injurious responses (photosynthesis suppression, lipid peroxidation and visible injury); and (iii) protective responses (accumulation of UV-absorbing compounds and differential expression of proteins involved in detoxification/antioxidation, defense, protein processing, RNA processing, carbohydrate metabolism and secondary metabolism). The identification of UV-responsive proteins provided a better understanding of the molecular mechanism of plant responses to UV stress. Proteomic and qPCR analysis identified one up-regulated and two induced proteins with important functions: tryptophan synthase α chain (production of radical oxygen species), glyoxalase I (detoxification/antioxidation) and a Bet v I family protein (defense). These results will contribute to future research into their roles in UV stress responses in plants.


Mycorrhiza | 2011

Diversity and composition of ectomycorrhizal community on seedling roots: The role of host preference and soil origin

Qiong Ding; Yu Liang; Pierre Legendre; Xinhua He; Kequan Pei; Xiaojun Du; Keping Ma

As the main source of inocula, ectomycorrhizal (ECM) fungal propagules are critical for root colonization and seedling survival in deforested areas. It is essential to know factors that may affect the diversity and composition of ECM fungal community on roots of seedlings planted in deforest areas during reforestation. We quantitatively evaluated the effect of host plant and soil origin on ECM fungal propagule community structure established on roots of Castanopsis fargesii, Lithocarpus harlandii, Pinus armandii, and Pinus massoniana growing in soils from local natural forests and from sites deforested by clear-cut logging in the 1950s and 1960s. ECM root tips were sampled in April, July, and October of 2006, and ECM fungal communities were determined using ECM root morphotyping, internal transcribed spacer (ITS)-RFLP, and ITS sequencing. A total of 36 ECM fungal species were observed in our study, and species richness varied with host species and soil origin. Decreased colonization rates were found in all host species except for L. harlandii, and reduced species richness was found in all host species except for P. armandii in soil from the deforested site, which implied the great changes in ECM fungal community composition. Our results showed that 33.3% variance in ECM fungal community composition could be explained by host plant species and 4.6% by soil origin. Results of indicator species analysis demonstrated that 14 out of 19 common ECM fungal species showed significant preference to host plant species, suggesting that the host preference of ECM fungi was one of the most important mechanisms in structuring ECM fungal community. Accordingly, the host plant species should be taken into account in the reforestation of deforested areas due to the strong and commonly existed host preference of ECM fungi.


American Journal of Botany | 2007

A molecular approach to species identification of Chenopodiaceae pollen grains in surface soil

Ling-Juan Zhou; Kequan Pei; Bo Zhou; Keping Ma

Pollen identification and classification are important not only for palynologists, but also for systematists and ecologists. Because palynological methods for the identification of pollen in surface soil until now could resolve at best to the generic level, we have developed a molecular approach to species-level identification of Chenopodiaceae pollen in surface soils. Surface soil samples were collected in the central area of Junggar Desert Basin, Xinjiang, China. Fresh leaves of 19 Chenopodiaceae species were sampled for DNA sequencing, establishing a database of internal transcribed spacer (ITS) regions of nuclear ribosomal DNA for Chenopodiaceae. Individual chenopod pollen grains in a soil sample were separated from the soil and the ITS1 region of each pollen grain was amplified using nested PCR and sequenced. By comparing the amplified ITS1 sequences to those in the Chenopodiaceous database, we identified the pollen in the soil samples to the level of species. The new method provides a technical reference for species identification of soil surface pollen for other families. This work is necessary for further efforts to interpret the relationship of surface soil pollen to vegetation characteristics. It also has significant potential for enhancing the ability to identify pollen in clinical airborne allergen or criminological studies.


PLOS ONE | 2012

Different Distribution Patterns between Putative Ercoid Mycorrhizal and Other Fungal Assemblages in Roots of Rhododendron decorum in the Southwest of China

Lifu Sun; Kequan Pei; Fang Wang; Qiong Ding; Yanhong Bing; Bo Gao; Yu Zheng; Yu Liang; Keping Ma

Fungal diversity within plant roots is affected by several factors such as dispersal limitation, habitat filtering, and plant host preference. Given the differences in life style between symbiotic and non-symbiotic fungi, the main factors affecting these two groups of fungi may be different. We assessed the diversity of root associated fungi of Rhododendron decorum using internal transcribed spacer (ITS) sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis, and our aim was to evaluate the role of different factors in structuring ericoid mycorrhizal (ERM) and non-ericoid mycorrhizal (NEM) fungal communities. Thirty-five fungal operational taxonomic units (OTUs) were found in roots of R. decorum, of which 25 were putative ERM fungal species. Of the two main groups of known ERM, helotialean fungi were more abundant and common than sebacinalean species. Geographic and host patterning of the fungal assemblages were different for ERM and NEM. The distribution of putative ERM fungal terminal restriction fragments (TRFs) showed that there were more common species within ERM than in the NEM fungal assemblages. Results of Mantel tests indicated that the composition of NEM fungal assemblages correlated with geographic parameters while ERM fungal assemblages lacked a significant geographic pattern and instead were correlated with host genotype. Redundancy analysis (RDA) showed that the NEM fungal assemblages were significantly correlated with latitude, longitude, elevation, mean annual precipitation (MAP), and axis 2 of a host-genetic principle component analysis (PCA), while ERM fungal assemblages correlated only with latitude and axis 1 of the host-genetic PCA. We conclude that ERM and NEM assemblages are affected by different factors, with the host genetic composition more important for ERM and geographic factors more important for NEM assemblages. Our results contribute to understanding the roles of dispersal limitation, abiotic factors and biotic interactions in structuring fungal communities in plant roots.


Scientific Reports | 2016

Root-associated fungi of Vaccinium carlesii in subtropical forests of China: intra- and inter-annual variability and impacts of human disturbances

Yanhua Zhang; Jian Ni; Fangping Tang; Kequan Pei; Yiqi Luo; Lifen Jiang; Lifu Sun; Yu Liang

Ericoid mycorrhiza (ERM) are expected to facilitate establishment of ericaceous plants in harsh habitats. However, diversity and driving factors of the root-associated fungi of ericaceous plants are poorly understood. In this study, hair-root samples of Vaccinium carlesii were taken from four forest types: old growth forests (OGF), secondary forests with once or twice cutting (SEC I and SEC II), and Cunninghamia lanceolata plantation (PLF). Fungal communities were determined using high-throughput sequencing, and impacts of human disturbances and the intra- and inter-annual variability of root-associated fungal community were evaluated. Diverse fungal taxa were observed and our results showed that (1) Intra- and inter-annual changes in root-associated fungal community were found, and the Basidiomycota to Ascomycota ratio was related to mean temperature of the sampling month; (2) Human disturbances significantly affected structure of root-associated fungal community of V. carlesii, and two secondary forest types were similar in root-associated fungal community and were closer to that of the old growth forest; (3) Plant community composition, edaphic parameters, and geographic factors significantly affected root-associated fungal communities of V. carlesii. These results may be helpful in better understanding the maintenance mechanisms of fungal diversity associated with hair roots of ERM plants under human disturbances.


Journal of Plant Ecology-uk | 2017

Diversity of root-associated fungi of Vaccinium mandarinorum along a human disturbance gradient in subtropical forests, China

Yanhua Zhang; Jian Ni; Fangping Tang; Lifen Jiang; Tianrong Guo; Kequan Pei; Lifu Sun; Yu Liang

Aims Ericaceous plant species can host diverse fungi in their roots, including ericoid mycorrhizal fungi (ERMF), endophytes, pathogens and some species with unknown functions. However, how this diversity of fungi responds to different human disturbances is not well understood. Methods In this study, we examined the effects of different human disturbance on fungal diversity in hair roots of Vaccinium mandarinorum, an ericaceous plant. Fungal DNA was extracted from hair roots of V. mandarinorum and high-throughput sequencing was applied to detect the diversity of root-associated fungi along a human disturbance gradient in subtropical forests in Gutianshan National Nature Reserve (GNNR) in East China. The four forest types with different disturbance regime were: old growth forest (OGF), secondary forest with once cut (SEC I), secondary forest with twice cut (SEC II) and Cunninghamia lanceolata plantation (PLF). Important Findings The results showed that: (i) diverse fungal operational units (OTUs) were detected in hair roots of V. mandarinorum in the four types of forests, covering fungal phyla of Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Zygomycota; (ii) Community composition of root-associated fungi of V. mandarinorum in PLF was distinct from those in the other three forest types, and two types of secondary forests had similar fungal community composition; (iii) Different fungal families respond differently to human disturbances: fungal families with significant preference to OGF were ectomycorrhizal or saprophytic fungi while fungal families with higher relative abundance in PLF were plant pathogenic or saprophytic fungi; (iv) The first principal component (PC1) of plant community had a significant effect on composition of root-associated fungal community, while edaphic parameters showed no significant effect on fungal community composition in roots of V. mandarinorum. Our results help to better understand the responses of both ericaceous plants and their fungal partners to human disturbances and forest managements.


PLOS ONE | 2017

Decomposing functional trait associations in a Chinese subtropical forest

Xuefei Li; Kequan Pei; Marc Kéry; Pascal A. Niklaus; Bernhard Schmid

Functional traits, properties of organisms correlated with ecological performance, play a central role in plant community assembly and functioning. To some extents, functional traits vary in concert, reflecting fundamental ecological strategies. While “trait syndromes” characteristic of e.g. fast-growing, early-successional vs. competitive, late-successional species are recognized in principle, less is known about the environmental and genetic factors at the source of trait variation and covariation within plant communities. We studied the three leaf traits leaf half-life (LHL), leaf mass per area (LMA) and nitrogen concentration in green leaves (Ngreen) and the wood trait wood density (WD) in 294 individuals belonging to 45 tree or shrub species in a Chinese subtropical forest from September 2006 to January 2009. Using multilevel ANOVA and decomposition of sums of products, we estimated the amount of trait variation and covariation among species (mainly genetic causes), i.e. plant functional type (deciduous vs. evergreen species), growth form (tree vs. shrub species), family/genus/species differences, and within species (mainly environmental causes), i.e. individual and season. For single traits, the variation between functional types and among species within functional types was large, but only LMA and Ngreen varied significantly among families and thus showed phylogenetic signal. Trait variation among individuals within species was small, but large temporal variation due to seasonal effects was found within individuals. We did not find any trait variation related to soil conditions underneath the measured individuals. For pairs of traits, variation between functional types and among species within functional types was large, reflecting a strong evolutionary coordination of the traits, with LMA, LHL and WD being positively correlated among each other and negatively with Ngreen. This integration of traits was consistent with a putative stem-leaf economics spectrum ranging from deciduous species with thin, high-nitrogen leaves and low-density wood to evergreen species with thick, low-nitrogen leaves and dense wood and was not influenced by phylogenetic history. Trait coordination within species was weak, allowing individual trees to deviate from the interspecific trait coordination and thus respond flexibly to environmental heterogeneity. Our findings suggest that within a single woody plant community variation and covariation in functional traits allows a large number of species to co-exist and cover a broad spectrum of multivariate niche space, which in turn may increase total resource extraction by the community and community functioning.


bioRxiv | 2017

Strong positive biodiversity-productivity relationships in a subtropical forest experiment

Yuanyuan Huang; Yuxin Chen; Nadia Castro-Izaguirre; Martin Baruffol; Matteo Brezzi; Anne C. Lang; Ying Li; Werner Haerdtle; Goddert von Oheimb; Xuefei Yang; Kequan Pei; Sabine Both; Xiaojuan Liu; Bo Yang; David Eichenberg; Thorsten Assmann; Juergen Bauhus; Thorsten Behrens; François Buscot; Xiao-Yong Chen; Douglas Chesters; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Jingyun Fang; Markus Fischer; Liang-Dong Guo; Dali Guo; Jessica L. M. Gutknecht; Jin-Sheng He

Forest ecosystems contribute substantially to global terrestrial primary productivity and climate regulation, but, in contrast to grasslands, experimental evidence for a positive biodiversity-productivity relationship in highly diverse forests is still lacking1. Here, we provide such evidence from a large forest biodiversity experiment with a novel design2 in subtropical China. Productivity (stand-level tree basal area, aboveground volume and carbon and their annual increment) increased linearly with the logarithm of tree species richness. Additive partitioning3 showed that increasing positive complementarity effects combined with weakening negative selection effects caused a strengthening of the relationship over time. In 2-species mixed stands, complementary effects increased with functional distance and selection effects with vertical crown dissimilarity between species. Understorey shrubs reduced stand-level tree productivity, but this effect of competition was attenuated by shrub species richness, indicating that a diverse understorey may facilitate overall ecosystem functioning. Identical biodiversity-productivity relationships were found in plots of different size, suggesting that extrapolation to larger scales is possible. Our results highlight the potential of multi-species afforestation strategies to simultaneously contribute to mitigation of climate change and biodiversity restoration.

Collaboration


Dive into the Kequan Pei's collaboration.

Top Co-Authors

Avatar

Yu Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Goddert von Oheimb

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Keping Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Durka

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Dali Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin-Sheng He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang-Dong Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Yong Chen

East China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge