Kerem Pekkan
Koç University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kerem Pekkan.
Circulation | 2007
Kevin K. Whitehead; Kerem Pekkan; Hiroumi D. Kitajima; Stephen M. Paridon; Ajit P. Yoganathan; Mark A. Fogel
Background— We previously demonstrated that power loss (PL) through the total cavopulmonary connection (TCPC) in single-ventricle patients undergoing Fontan can be calculated by computational fluid dynamic analysis using 3-dimensional MRI anatomic reconstructions. PL through the TCPC may play a role in single-ventricle physiology and is a function of cardiac output. We hypothesized that PL through the TCPC increases significantly under exercise flow conditions. Methods and Results— MRI data of 10 patients with a TCPC were analyzed to obtain 3-dimensional geometry and flow rates through the superior vena cava, inferior vena cava, left pulmonary artery, and right pulmonary artery. Steady computational fluid dynamic simulations were performed at baseline conditions using MRI-derived flows. Simulated exercise conditions of twice (2×) and three times (3×) baseline flow were performed by increasing inferior vena cava flow. PL, head loss, and effective resistance through the TCPC were calculated for each condition. Each condition was repeated at left pulmonary artery/right pulmonary artery ratios of 30/70 and 70/30 to determine the effects of pulmonary flow splits on exercise PL. For each patient, PL increases dramatically in a nonlinear fashion with increasing cardiac output, even when normalized to calculate head loss or resistance. Flow splits had a significant effect on PL at exercise, with most geometries favoring right pulmonary artery flow. Conclusions— The relationship between cardiac output and PL is nonlinear and highly dependent on TCPC geometry and pulmonary flow splits. This study demonstrates the importance of studying the TCPC under exercise conditions, because baseline conditions may not adequately characterize TCPC efficiency.
Development | 2011
Paola Corti; Sarah Young; Chia Yuan Chen; Michael J. Patrick; Elizabeth R. Rochon; Kerem Pekkan; Beth L. Roman
Arteriovenous malformations (AVMs) are fragile direct connections between arteries and veins that arise during times of active angiogenesis. To understand the etiology of AVMs and the role of blood flow in their development, we analyzed AVM development in zebrafish embryos harboring a mutation in activin receptor-like kinase I (alk1), which encodes a TGFβ family type I receptor implicated in the human vascular disorder hereditary hemorrhagic telangiectasia type 2 (HHT2). Our analyses demonstrate that increases in arterial caliber, which stem in part from increased cell number and in part from decreased cell density, precede AVM development, and that AVMs represent enlargement and stabilization of normally transient arteriovenous connections. Whereas initial increases in endothelial cell number are independent of blood flow, later increases, as well as AVMs, are dependent on flow. Furthermore, we demonstrate that alk1 expression requires blood flow, and despite normal levels of shear stress, some flow-responsive genes are dysregulated in alk1 mutant arterial endothelial cells. Taken together, our results suggest that Alk1 plays a role in transducing hemodynamic forces into a biochemical signal required to limit nascent vessel caliber, and support a novel two-step model for HHT-associated AVM development in which pathological arterial enlargement and consequent altered blood flow precipitate a flow-dependent adaptive response involving retention of normally transient arteriovenous connections, thereby generating AVMs.
Annals of Biomedical Engineering | 2005
Kerem Pekkan; Diane de Zelicourt; Liang Ge; Fotis Sotiropoulos; David H. Frakes; Mark A. Fogel; Ajit P. Yoganathan
Recent developments in medical image acquisition combined with the latest advancements in numerical methods for solving the Navier-Stokes equations have created unprecedented opportunities for developing simple and reliable computational fluid dynamics (CFD) tools for meeting patient-specific surgical planning objectives. However, for CFD to reach its full potential and gain the trust and confidence of medical practitioners, physics-driven numerical modeling is required. This study reports on the experience gained from an ongoing integrated CFD modeling effort aimed at developing an advanced numerical simulation tool capable of accurately predicting flow characteristics in an anatomically correct total cavopulmonary connection (TCPC). An anatomical intra-atrial TCPC model is reconstructed from a stack of magnetic resonance (MR) images acquired in vivo. An exact replica of the computational geometry was built using transparent rapid prototyping. Following the same approach as in earlier studies on idealized models, flow structures, pressure drops, and energy losses were assessed both numerically and experimentally, then compared. Numerical studies were performed with both a first-order accurate commercial software and a recently developed, second-order accurate, in-house flow solver. The commercial CFD model could, with reasonable accuracy, capture global flow quantities of interest such as control volume power losses and pressure drops and time-averaged flow patterns. However, for steady inflow conditions, both flow visualization experiments and particle image velocimetry (PIV) measurements revealed unsteady, complex, and highly 3D flow structures, which could not be captured by this numerical model with the available computational resources and additional modeling efforts that are described. Preliminary time-accurate computations with the in-house flow solver were shown to capture for the first time these complex flow features and yielded solutions in good agreement with the experimental observations. Flow fields obtained were similar for the studied total cardiac output range (1–3 l/min); however hydrodynamic power loss increased dramatically with increasing cardiac output, suggesting significant energy demand at exercise conditions. The simulation of cardiovascular flows poses a formidable challenge to even the most advanced CFD tools currently available. A successful prediction requires a two-pronged, physics-based approach, which integrates high-resolution CFD tools and high-resolution laboratory measurements.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Kartik S. Sundareswaran; Kerem Pekkan; Lakshmi Prasad Dasi; Kevin K. Whitehead; Shiva Sharma; Kirk R. Kanter; Mark A. Fogel; Ajit P. Yoganathan
Little is known about the impact of the total cavopulmonary connection (TCPC) on resting and exercise hemodynamics in a single ventricle (SV) circulation. The aim of this study was to elucidate this mechanism using a lumped parameter model of the SV circulation. Pulmonary vascular resistance (1.96+/-0.80 WU) and systemic vascular resistances (18.4+/-7.2 WU) were obtained from catheterization data on 40 patients with a TCPC. TCPC resistances (0.39+/-0.26 WU) were established using computational fluid dynamic simulations conducted on anatomically accurate three-dimensional models reconstructed from MRI (n=16). These parameters were used in a lumped parameter model of the SV circulation to investigate the impact of TCPC resistance on SV hemodynamics under resting and exercise conditions. A biventricular model was used for comparison. For a biventricular circulation, the cardiac output (CO) dependence on TCPC resistance was negligible (sensitivity=-0.064 l.min(-1).WU(-1)) but not for the SV circulation (sensitivity=-0.88 l.min(-1).WU(-1)). The capacity to increase CO with heart rate was also severely reduced for the SV. At a simulated heart rate of 150 beats/min, the SV patient with the highest resistance (1.08 WU) had a significantly lower increase in CO (20.5%) compared with the SV patient with the lowest resistance (50%) and normal circulation (119%). This was due to the increased afterload (+35%) and decreased preload (-12%) associated with the SV circulation. In conclusion, TCPC resistance has a significant impact on resting hemodynamics and the exercise capacity of patients with a SV physiology.
Medical & Biological Engineering & Computing | 2008
Kerem Pekkan; Brian Whited; Kirk R. Kanter; Shiva Sharma; Diane de Zelicourt; Kartik S. Sundareswaran; David H. Frakes; Jarek Rossignac; Ajit P. Yoganathan
The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human–shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement “manual hemodynamic optimization” at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.
Asaio Journal | 2005
Kerem Pekkan; David H. Frakes; Diane de Zelicourt; Carol Lucas; W. James Parks; Ajit P. Yoganathan
In pediatric ventricular assist device (VAD) design, the process of matching device characteristics and dimensions to the relevant disease conditions poses a formidable challenge because the disease spectrum is more highly varied than for adult applications. One example arises with single-ventricle congenital defects, which demand palliative surgeries that create elevated systemic venous pressure and altered pulmonary hemodynamics. Substituting a mechanical pump as a right ventricle has long been proposed to eliminate the associated early and postoperative anomalies. A pulsatile lumped-parameter model of the single-ventricle circulation was developed to guide the preliminary design studies. Two special modules, the pump characteristics and the total cavopulmonary connection (TCPC) module, are introduced. The TCPC module incorporates the results of three-dimensional patient-specific computational fluid dynamics calculations, where the pressure drop in the TCPC anastomosis is calculated at the equal vascular lung resistance operating point for different cardiac outputs at a steady 60/40 inferior vena cava/superior vena cava flow split. Preliminary results obtained with the adult parameters are presented with no ventricle remodeling or combined larger-size single ventricle. A detailed literature review of single-ventricle function is provided. Coupling a continuous pump to the single-ventricle circulation brought both the pulmonary and systemic venous pressures back to manageable levels. Selected VADs provided an acceptable cardiac output trace of the single left ventricle, after initial transients. Remodeling of the systemic venous compliance plays a critical role in performance and is included in this study. Pulsatile operation mode with rotational speed regulation highlighted the importance of TCPC and pulmonary artery compliances. Four different pumps and three patient-specific anatomical TCPC pathologies were studied. Magnitudes of the equivalent TCPC resistances were found to be comparable to the vascular resistances of the normal baseline circulation, significantly affecting both the VAD design and hemodynamics.
IEEE Transactions on Medical Imaging | 2008
David H. Frakes; Lakshmi Prasad Dasi; Kerem Pekkan; Hiroumi D. Kitajima; Kartik S. Sundareswaran; Ajit P. Yoganathan; Mark J. T. Smith
A new technique is presented for interpolating between grey-scale images in a medical data set. Registration between neighboring slices is achieved with a modified control grid interpolation algorithm that selectively accepts displacement field updates in a manner optimized for performance. A cubic interpolator is then applied to pixel intensities correlated by the displacement fields. Special considerations are made for efficiency, interpolation quality, and compression in the implementation of the algorithm. Experimental results show that the new method achieves good quality, while offering dramatic improvement in efficiency relative to the best competing method.
Journal of Biomechanical Engineering-transactions of The Asme | 2013
David A. Steinman; Yiemeng Hoi; Paul Fahy; Liam Morris; Michael T. Walsh; Nicolas Aristokleous; Andreas S. Anayiotos; Yannis Papaharilaou; Amirhossein Arzani; Shawn C. Shadden; Philipp Berg; Gábor Janiga; Joris Bols; Patrick Segers; Neil W. Bressloff; Merih Cibis; Frank J. H. Gijsen; Salvatore Cito; Jordi Pallares; Leonard D. Browne; Jennifer A. Costelloe; Adrian G. Lynch; Joris Degroote; Jan Vierendeels; Wenyu Fu; Aike Qiao; Simona Hodis; David F. Kallmes; Hardeep S. Kalsi; Quan Long
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
The Journal of Thoracic and Cardiovascular Surgery | 2009
Lakshmi Prasad Dasi; Resmi KrishnankuttyRema; Hiroumi D. Kitajima; Kerem Pekkan; Kartik S. Sundareswaran; Mark A. Fogel; Shiva Sharma; Kevin K. Whitehead; Kirk R. Kanter; Ajit P. Yoganathan
OBJECTIVE We quantify the geometric and hemodynamic characteristics of extracardiac and lateral tunnel Fontan surgical options and correlate certain anatomic characteristics with their hemodynamic efficiency and patient cardiac index. METHODS AND RESULTS The study was conducted retrospectively on 22 patients undergoing Fontan operations (11 extracardiac and 11 lateral tunnel operations). Total cavopulmonary connection geometric parameters such as vessel areas, curvature, and offsets were quantified using a skeletonization method. Energy loss at the total cavopulmonary connection junction was available from previous in vitro experiments and computational fluid dynamic simulations for 5 and 9 patients, respectively. Cardiac index data were available for all patients. There was no significant difference in the mean and minimum cross-sectional vessel areas of the pulmonary artery between the extracardiac and lateral tunnel groups. The indexed energy dissipation within the total cavopulmonary connection was strongly correlated to minimum cross-sectional area of the pulmonary arteries (R(2) value of 0.90 and P < .0002), whereas all other geometric features, including shape characteristics, had no significant correlation. Finally, cardiac index significantly correlated with the minimum pulmonary artery area (P = .006), suggesting that total cavopulmonary connection energy losses significantly affect resting cardiac output. CONCLUSIONS The minimum outlet size of the total cavopulmonary connection (ie, minimum cross section of pulmonary artery) governs the energy loss characteristics of the total cavopulmonary connection more strongly than variations in the shapes corresponding to extracardiac and lateral tunnel configurations. Differences in pulmonary artery sizes must be accounted for when comparing energy losses between extracardiac and lateral tunnel geometries.
Circulation | 2005
Kerem Pekkan; Hiroumi D. Kitajima; Diane de Zelicourt; Joseph M. Forbess; W. James Parks; Mark A. Fogel; Shiva Sharma; Kirk R. Kanter; David H. Frakes; Ajit P. Yoganathan
Background— In our multicenter study of the total cavopulmonary connection (TCPC), a cohort of patients with long-segment left pulmonary artery (LPA) stenosis was observed (35%). The clinically recognized detrimental effects of LPA stenosis motivated a computational fluid dynamic simulation study within 3-dimensional patient-specific and idealized TCPC pathways. The goal of this study was to quantify and evaluate the hemodynamic impact of LPA stenosis and to judge interventional strategies aimed at treating it. Methods and Results— Simulations were conducted at equal vascular lung resistance, modeling both discrete stenosis (DS) and diffuse long-segment hypoplasia with varying degrees of obstruction (0% to 80%). Models having fenestrations of 2 to 6 mm and atrium pressures of 4 to 14 mm Hg were explored. A patient-specific, extracardiac TCPC with 85% DS was studied in its original configuration and after virtual surgery that dilated the LPA to 0% stenosis in the computer medium. Performance indices improved exponentially (R2>0.99) with decreasing obstruction. Diffuse long-segment hypoplasia was ≈50% more severe with regard to lung perfusion and cardiac energy loss than DS. Virtual angioplasty performed on the 3-dimensional Fontan anatomy exhibiting an 85% DS stenosis produced a 61% increase in left lung perfusion and a 50% decrease in cardiac energy dissipation. After 4-mm fenestration, TCPC baffle pressure dropped by ≈10% and left lung perfusion decreased by ≈8% compared with the 80% DS case. Conclusions— DS <60% and diffuse long-segment hypoplasia <40% could be considered tolerable because both resulted in only a 12% decrease in left lung perfusion. In contrast to angioplasty, a fenestration (right-to-left shunt) reduced TCPC pressure at the cost of decreased left and right lung perfusion. These results suggest that pre-Fontan computational fluid dynamic simulation may be valuable for determining both the hemodynamic significance of LPA stenosis and the potential benefits of intervention.