Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keren Lasker is active.

Publication


Featured researches published by Keren Lasker.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

Keren Lasker; Friedrich Förster; Stefan Bohn; Thomas Walzthoeni; Elizabeth Villa; Pia Unverdorben; Florian Beck; Ruedi Aebersold; Andrej Sali; Wolfgang Baumeister

The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.


Structure | 2008

Protein structure fitting and refinement guided by cryo-EM density

Maya Topf; Keren Lasker; Ben Webb; Haim J. Wolfson; Wah Chiu; Andrej Sali

For many macromolecular assemblies, both a cryo-electron microscopy map and atomic structures of its component proteins are available. Here we describe a method for fitting and refining a component structure within its map at intermediate resolution (<15 A). The atomic positions are optimized with respect to a scoring function that includes the crosscorrelation coefficient between the structure and the map as well as stereochemical and nonbonded interaction terms. A heuristic optimization that relies on a Monte Carlo search, a conjugate-gradients minimization, and simulated annealing molecular dynamics is applied to a series of subdivisions of the structure into progressively smaller rigid bodies. The method was tested on 15 proteins of known structure with 13 simulated maps and 3 experimentally determined maps. At approximately 10 A resolution, Calpha rmsd between the initial and final structures was reduced on average by approximately 53%. The method is automated and can refine both experimental and predicted atomic structures.


PLOS Biology | 2012

Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies

Daniel Russel; Keren Lasker; Ben Webb; Javier A. Velázquez-Muriel; Elina Tjioe; Dina Schneidman-Duhovny; Bret Peterson; Andrej Sali

A set of software tools for building and distributing models of macromolecular assemblies uses an integrative structure modeling approach, which casts the building of models as a computational optimization problem where information is encoded into a scoring function used to evaluate candidate models.


Journal of Structural Biology | 2012

UCSF Chimera, MODELLER, and IMP: an integrated modeling system.

Zheng Yang; Keren Lasker; Dina Schneidman-Duhovny; Ben Webb; Conrad C. Huang; Eric F. Pettersen; Thomas D. Goddard; Elaine C. Meng; Andrej Sali; Thomas E. Ferrin

Structural modeling of macromolecular complexes greatly benefits from interactive visualization capabilities. Here we present the integration of several modeling tools into UCSF Chimera. These include comparative modeling by MODELLER, simultaneous fitting of multiple components into electron microscopy density maps by IMP MultiFit, computing of small-angle X-ray scattering profiles and fitting of the corresponding experimental profile by IMP FoXS, and assessment of amino acid sidechain conformations based on rotamer probabilities and local interactions by Chimera.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Insights into the molecular architecture of the 26S proteasome.

Stephan Nickell; Florian Beck; Sjors H.W. Scheres; Andreas Korinek; Friedrich Förster; Keren Lasker; Oana Mihalache; Na Sun; Andrej Sali; Jürgen M. Plitzko; J.M. Carazo; Matthias Mann; Wolfgang Baumeister

Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the “base” part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the “wobbling” model that was previously proposed to explain the role of the regulatory complex in opening the gate in the α-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together

Ganesh Ramnath Pathare; Stefan Bohn; Pia Unverdorben; Ágnes Hubert; Roman Körner; Stephan Nickell; Keren Lasker; Andrej Sali; Tomohiro Tamura; Taiki Nishioka; Friedrich Förster; Wolfgang Baumeister; Andreas Bracher

Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.


Journal of Molecular Biology | 2009

Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly.

Keren Lasker; Maya Topf; Andrej Sali; Haim J. Wolfson

Models of macromolecular assemblies are essential for a mechanistic description of cellular processes. Such models are increasingly obtained by fitting atomic-resolution structures of components into a density map of the whole assembly. Yet, current density-fitting techniques are frequently insufficient for an unambiguous determination of the positions and orientations of all components. Here, we describe MultiFit, a method used for simultaneously fitting atomic structures of components into their assembly density map at resolutions as low as 25 A. The component positions and orientations are optimized with respect to a scoring function that includes the quality-of-fit of components in the map, the protrusion of components from the map envelope, and the shape complementarity between pairs of components. The scoring function is optimized by our exact inference optimizer DOMINO (Discrete Optimization of Multiple INteracting Objects) that efficiently finds the global minimum in a discrete sampling space. MultiFit was benchmarked on seven assemblies of known structure, consisting of up to seven proteins each. The input atomic structures of the components were obtained from the Protein Data Bank, as well as by comparative modeling based on a 16-99% sequence identity to a template structure. A near-native configuration was usually found as the top-scoring model. Therefore, MultiFit can provide initial configurations for further refinement of many multicomponent assembly structures described by electron microscopy.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Peptide dimer structure in an Aβ(1–42) fibril visualized with cryo-EM

Matthias Schmidt; Alexis Rohou; Keren Lasker; Jay Kant Yadav; Cordelia Schiene-Fischer; Marcus Fändrich; Nikolaus Grigorieff

Significance β-Amyloid (Aβ) fibrils are formed from Aβ peptide and are a hallmark feature of Alzheimer’s disease (AD). Despite their involvement in AD, much remains unclear about the formation of these aggregates and their structures at the molecular level. We have obtained a 3D image of a fibril formed from the Aβ(1–42) peptide isoform using electron cryomicroscopy and built a partial atomic model based on these data. We show that the core of the fibril is formed by two peptide C termini, explaining why aggregation inhibitors are most potent when targeting the C terminus. Our model explains how addition of C-terminal amino acids may stabilize peptide interaction and how fibril stability is affected by mutations leading to familial AD. Alzheimer’s disease (AD) is a fatal neurodegenerative disorder in humans and the main cause of dementia in aging societies. The disease is characterized by the aberrant formation of β-amyloid (Aβ) peptide oligomers and fibrils. These structures may damage the brain and give rise to cerebral amyloid angiopathy, neuronal dysfunction, and cellular toxicity. Although the connection between AD and Aβ fibrillation is extensively documented, much is still unknown about the formation of these Aβ aggregates and their structures at the molecular level. Here, we combined electron cryomicroscopy, 3D reconstruction, and integrative structural modeling methods to determine the molecular architecture of a fibril formed by Aβ(1–42), a particularly pathogenic variant of Aβ peptide. Our model reveals that the individual layers of the Aβ fibril are formed by peptide dimers with face-to-face packing. The two peptides forming the dimer possess identical tilde-shaped conformations and interact with each other by packing of their hydrophobic C-terminal β-strands. The peptide C termini are located close to the main fibril axis, where they produce a hydrophobic core and are surrounded by the structurally more flexible and charged segments of the peptide N termini. The observed molecular architecture is compatible with the general chemical properties of Aβ peptide and provides a structural basis for various biological observations that illuminate the molecular underpinnings of AD. Moreover, the structure provides direct evidence for a steric zipper within a fibril formed by full-length Aβ peptide.


Molecular & Cellular Proteomics | 2010

Integrative Structure Modeling of Macromolecular Assemblies from Proteomics Data

Keren Lasker; Jeremy Phillips; Daniel Russel; Javier A. Velázquez-Muriel; Dina Schneidman-Duhovny; Elina Tjioe; Ben Webb; Avner Schlessinger; Andrej Sali

Proteomics techniques have been used to generate comprehensive lists of protein interactions in a number of species. However, relatively little is known about how these interactions result in functional multiprotein complexes. This gap can be bridged by combining data from proteomics experiments with data from established structure determination techniques. Correspondingly, integrative computational methods are being developed to provide descriptions of protein complexes at varying levels of accuracy and resolution, ranging from complex compositions to detailed atomic structures.


PLOS Genetics | 2014

The coding and noncoding architecture of the Caulobacter crescentus genome.

Jared M. Schrader; Bo Zhou; Gene-Wei Li; Keren Lasker; W. Seth Childers; Brandon Williams; Tao Long; Sean Crosson; Harley H. McAdams; Jonathan S. Weissman; Lucy Shapiro

Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.

Collaboration


Dive into the Keren Lasker's collaboration.

Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Russel

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elina Tjioe

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Webb

California Institute for Quantitative Biosciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge