Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerong Deng is active.

Publication


Featured researches published by Kerong Deng.


ACS Nano | 2015

UV-Emitting Upconversion-Based TiO2 Photosensitizing Nanoplatform: Near-Infrared Light Mediated in Vivo Photodynamic Therapy via Mitochondria-Involved Apoptosis Pathway

Zhiyao Hou; Yuanxin Zhang; Kerong Deng; Yinyin Chen; Xuejiao Li; Xiaoran Deng; Ziyong Cheng; Hongzhou Lian; Chunxia Li; Jun Lin

Photodynamic therapy (PDT) is a promising antitumor treatment that is based on the photosensitizers that inhibit cancer cells by yielding reactive oxygen species (ROS) after irradiation of light with specific wavelengths. As a potential photosensitizer, titanium dioxide (TiO2) exhibits minimal dark cytotoxicity and excellent ultraviolet (UV) light triggered cytotoxicity, but is challenged by the limited tissue penetration of UV light. Herein, a novel near-infrared (NIR) light activated photosensitizer for PDT based on TiO2-coated upconversion nanoparticle (UCNP) core/shell nanocomposites (UCNPs@TiO2 NCs) is designed. NaYF4:Yb(3+),Tm(3+)@NaGdF4:Yb(3+) core/shell UCNPs can efficiently convert NIR light to UV emission that matches well with the absorption of TiO2 shells. The UCNPs@TiO2 NCs endocytosed by cancer cells are able to generate intracellular ROS under NIR irradiation, decreasing the mitochondrial membrane potential to release cytochrome c into the cytosol and then activating caspase 3 to induce cancer cell apoptosis. NIR light triggered PDT of tumor-bearing mice with UCNPs@TiO2 as photosensitizers can suppress tumor growth efficiently due to the better tissue penetration than UV irradiation. On the basis of the evidence of in vitro and in vivo results, UCNPs@TiO2 NCs could serve as an effective photosensitizer for NIR light mediated PDT in antitumor therapy.


Scientific Reports | 2015

Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging

Kerong Deng; Zhiyao Hou; Xuejiao Li; Chunxia Li; Yuanxin Zhang; Xiaoran Deng; Ziyong Cheng; Jun Lin

Multifunctional nanocarriers for targeted bioimaging and drug delivery have attracted much attention in early diagnosis and therapy of cancer. In this work, we develop a novel aptamer-guided nanocarrier based on the mesoporous metal-organic framework (MOF) shell and up-conversion luminescent NaYF4:Yb3+/Er3+ nanoparticles (UCNPs) core for the first time to achieve these goals. These UCNPs, chosen as optical labels in biological assays and medical imaging, could emit strong green emission under 980 nm laser. The MOF structure based on iron (III) carboxylate materials [MIL-100 (Fe)] possesses high porosity and non-toxicity, which is of great value as nanocarriers for drug storage/delivery. As a unique nanoplatform, the hybrid inorganic-organic drug delivery vehicles show great promising for simultaneous targeted labeling and therapy of cancer cells.


ACS Applied Materials & Interfaces | 2015

DNA-Hybrid-Gated Photothermal Mesoporous Silica Nanoparticles for NIR-Responsive and Aptamer-Targeted Drug Delivery

Yuanxin Zhang; Zhiyao Hou; Yakun Ge; Kerong Deng; Bei Liu; Xuejiao Li; Quanshun Li; Ziyong Cheng; Ping’an Ma; Chunxia Li; Jun Lin

Near-infrared light is an attractive stimulus due to its noninvasive and deep tissue penetration. Particularly, NIR light is utilized for cancer thermotherapy and on-demand release of drugs by the disruption of the delivery carriers. Here we have prepared a novel NIR-responsive DNA-hybrid-gated nanocarrier based on mesoporous silica-coated Cu1.8S nanoparticles. Cu1.8S nanoparticles, possessing high photothermal conversion efficiency under a 980 nm laser, were chosen as photothermal agents. The mesoporous silica structure could be used for drug storage/delivery and modified with aptamer-modified GC-rich DNA-helix as gatekeepers, drug vectors, and targeting ligand. Simultaneously, the as-produced photothermal effect caused denaturation of DNA double strands, which triggered the drug release of the DNA-helix-loaded hydrophilic drug doxorubicin and mesopore-loaded hydrophobic drug curcumin, resulting in a synergistic therapeutic effect. The Cu1.8S@mSiO2 nanocomposites endocytosed by cancer cells through the aptamer-mediated mode are able to generate rational release of doxorubicin/curcumin under NIR irradiation, strongly enhancing the synergistic growth-inhibitory effect of curcumin against doxorubicin in MCF-7 cells, which is associated with a strong mitochondrial-mediated cell apoptosis progression. The underlying mechanism of apoptosis showed a strong synergistic inhibitory effect both on the expression of Bcl-2, Bcl-xL, Mcl-1, and upregulated caspase 3/9 activity and on the expression level of Bak and Bax. Therefore, Cu1.8S@mSiO2 with efficient synergistic therapeutic efficiency is a potential multifunctional cancer therapy nanoplatform.


Advanced Materials | 2017

A Hollow-Structured CuS@Cu2S@Au Nanohybrid: Synergistically Enhanced Photothermal Efficiency and Photoswitchable Targeting Effect for Cancer Theranostics

Xiaoran Deng; Kai Li; Xuechao Cai; Bin Liu; Yi Wei; Kerong Deng; Zhongxi Xie; Zhijian Wu; Ping'an Ma; Zhiyao Hou; Ziyong Cheng; Jun Lin

It is of great importance in drug delivery to fabricate multifunctional nanocarriers with intelligent targeting properties, for cancer diagnosis and therapy. Herein, hollow-structured CuS@Cu2 S@Au nanoshell/satellite nanoparticles are designed and synthesized for enhanced photothermal therapy and photoswitchable targeting theranostics. The remarkably improved photothermal conversion efficiency of CuS@Cu2 S@Au under 808 nm near-infrared (NIR) laser irradiation can be explained by the reduced bandgap and more circuit paths for electron transitions for CuS and Cu2 S modified with Au nanoparticles, as calculated by the Vienna ab initio simulation package, based on density functional theory. By modification of thermal-isomerization RGD targeting molecules and thermally sensitive copolymer on the surface of nanoparticles, the transition of the shielded/unshielded mode of RGD (Arg-Gly-Asp) targeting molecules and shrinking of the thermally sensitive polymer by NIR photoactivation can realize a photoswitchable targeting effect. After loading an anticancer drug doxorubicin in the cavity of CuS@Cu2 S@Au, the antitumor therapy efficacy is greatly enhanced by combining chemo- and photothermal therapy. The reported nanohybrid can also act as a photoacoustic imaging agent and an NIR thermal imaging agent for real-time imaging, which provides a versatile platform for multifunctional theranostics and stimuli-responsive targeted cancer therapy.


Small | 2017

Recent Progress in Near Infrared Light Triggered Photodynamic Therapy

Kerong Deng; Chunxia Li; Shanshan Huang; Bengang Xing; Dayong Jin; Qingguang Zeng; Zhiyao Hou; Jun Lin

Nowadays, photodynamic therapy (PDT) is under the research spotlight as an appealing modality for various malignant tumors. Compared with conventional PDT treatment activated by ultraviolet or visible light, near infrared (NIR) light-triggered PDT possessing deeper penetration to lesion area and lower photodamage to normal tissue holds great potential for in vivo deep-seated tumor. In this review, recent research progress related to the exploration of NIR light responsive PDT nanosystems is summarized. To address current obstacles of PDT treatment and facilitate the effective utilization, several innovative strategies are developed and introduced into PDT nanosystems, including the conjugation with targeted moieties, O2 self-sufficient PDT, dual photosensitizers (PSs)-loaded PDT nanoplatform, and PDT-involved synergistic therapy. Finally, the potential challenges as well as the prospective for further development are also discussed.


Journal of Materials Chemistry B | 2017

808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy

Kerong Deng; Yinyin Chen; Chunxia Li; Xiaoran Deng; Zhiyao Hou; Ziyong Cheng; Yanqiu Han; Bengang Xing; Jun Lin

Near-infrared (NIR) light induced phototherapy has attracted considerable attention due to its deep therapeutic depth. To improve the therapeutic outcome and address non-selective side effects, the combination of complementary phototherapeutic strategies in a single nanoagent with precise targeting ability may provide an effective approach for cancer therapy. Thus we have developed an 808 nm NIR light triggered nanosystem based on IR806 dye functionalized MnFe2O4 (MFO-IR) for synchronous magnetic targeted and magnetic resonance (MR) imaging guided in vivo photodynamic/photothermal synergistic therapy. In this construction strategy, carboxylic acid functionalized NIR dye IR806 is explored as an 808 nm NIR-excited photosensitizer (PS) for the first time, which can also provide a conjugation site for MnFe2O4 nanoparticles (MFO NPs). Here, monodisperse MFO NPs have multiple capacities as dye carriers, targeting ligands, MRI contrast agents and photothermal agents. MFO-IR nanocomposites (NCs) with negligible toxicity present efficient NIR-mediated photothermal damage and ROS cytotoxicity via the relevant in vitro experimental investigations. With ideal magnetic targeting effects and remarkable NIR light-responsive properties, these MFO-IR NCs exhibit high in vivo tumor localization and could destroy subcutaneous solid tumors completely under an external magnetic field and 808 nm laser irradiation. Consequently, this magnetic nanosystem has great potential for simultaneous diagnosis and precise cancer phototherapy.


Advanced Materials | 2018

Rational Design of Multifunctional Fe@γ‐Fe2O3@H‐TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging‐Guided Photothermal Cancer Therapy

Meifang Wang; Kerong Deng; Wei Lu; Xiaoran Deng; Kai Li; Yanshu Shi; Binbin Ding; Ziyong Cheng; Bengang Xing; Gang Han; Zhiyao Hou; Jun Lin

Titanium dioxide (TiO2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe2 O3 @H-TiO2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO2 in to hydrogenated TiO2 (H-TiO2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO2 shell, the Fe@γ-Fe2 O3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe2 O3 @H-TiO2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO2 and γ-Fe2 O3 , and the electronic structures of Fe@γ-Fe2 O3 @H-TiO2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging.


Advanced Functional Materials | 2015

Enhanced Antitumor Efficacy by 808 nm Laser-Induced Synergistic Photothermal and Photodynamic Therapy Based on a Indocyanine-Green-Attached W18O49 Nanostructure

Kerong Deng; Zhiyao Hou; Xiaoran Deng; Piaoping Yang; Chunxia Li; Jun Lin


Biomaterials | 2016

808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy.

Zhiyao Hou; Kerong Deng; Chunxia Li; Xiaoran Deng; Hongzhou Lian; Ziyong Cheng; Dayong Jin; Jun Lin


Biomaterials | 2015

Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging

Xiaoran Deng; Yunlu Dai; Jianhua Liu; Ying Zhou; Ping'an Ma; Ziyong Cheng; Yinyin Chen; Kerong Deng; Xuejiao Li; Zhiyao Hou; Chunxia Li; Jun Lin

Collaboration


Dive into the Kerong Deng's collaboration.

Top Co-Authors

Avatar

Jun Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhiyao Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoran Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ziyong Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunxia Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ping'an Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuejiao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yinyin Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bengang Xing

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yuanxin Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge