Kerry J. Nickols
California State University, Monterey Bay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kerry J. Nickols.
Limnology and Oceanography | 2012
Jennifer C. Prairie; Kelly R. Sutherland; Kerry J. Nickols; Amanda M. Kaltenberg
In plankton ecology, biological and physical dynamics are coupled, structuring how plankton interact with their environment and other organisms. This interdisciplinary field has progressed considerably over the recent past, due in large part to advances in technology that have improved our ability to observe plankton and their fluid environment simultaneously across multiple scales. Recent research has demonstrated that fluid flow interacting with plankton behavior can drive many planktonic processes and spatial patterns. Moreover, evidence now suggests that plankton behavior can significantly affect ocean physics. Biophysical processes relevant to plankton ecology span a range of scales; for example, microscale turbulence influences planktonic growth and grazing at millimeter scales, whereas features such as fronts and eddies can shape larger-scale plankton distributions. Most research in this field focuses on specific processes and thus is limited to a narrow range of spatial scales. However, biophysical interactions are intimately connected across scales, since processes at a given scale can have implications at much larger and smaller scales; thus, a cross-scale perspective on how biological and physical dynamics interact is essential for a comprehensive understanding of the field. Here, we present a review of biophysical interactions in the plankton across multiple scales, emphasizing new findings over recent decades and highlighting opportunities for cross-scale comparisons. By investigating feedbacks and interactions between processes at different scales, we aim to build cross-scale intuition about biophysical planktonic processes and provide insights for future directions in the field.
Molecular Ecology | 2016
Jesse A. Port; James L. O'Donnell; Ofelia Romero-Maraccini; Paul R. Leary; Steven Y. Litvin; Kerry J. Nickols; Kevan M. Yamahara; Ryan P. Kelly
Preserving biodiversity is a global challenge requiring data on species’ distribution and abundance over large geographic and temporal scales. However, traditional methods to survey mobile species’ distribution and abundance in marine environments are often inefficient, environmentally destructive, or resource‐intensive. Metabarcoding of environmental DNA (eDNA) offers a new means to assess biodiversity and on much larger scales, but adoption of this approach for surveying whole animal communities in large, dynamic aquatic systems has been slowed by significant unknowns surrounding error rates of detection and relevant spatial resolution of eDNA surveys. Here, we report the results of a 2.5 km eDNA transect surveying the vertebrate fauna present along a gradation of diverse marine habitats associated with a kelp forest ecosystem. Using PCR primers that target the mitochondrial 12S rRNA gene of marine fishes and mammals, we generated eDNA sequence data and compared it to simultaneous visual dive surveys. We find spatial concordance between individual species’ eDNA and visual survey trends, and that eDNA is able to distinguish vertebrate community assemblages from habitats separated by as little as ~60 m. eDNA reliably detected vertebrates with low false‐negative error rates (1/12 taxa) when compared to the surveys, and revealed cryptic species known to occupy the habitats but overlooked by visual methods. This study also presents an explicit accounting of false negatives and positives in metabarcoding data, which illustrate the influence of gene marker selection, replication, contamination, biases impacting eDNA count data and ecology of target species on eDNA detection rates in an open ecosystem.
The American Naturalist | 2015
Kerry J. Nickols; J. Wilson White; John L. Largier; Brian Gaylord
Predicting connectivity patterns in systems with fluid transport requires descriptions of the spatial distribution of propagules. In contrast to research on terrestrial seed dispersal, where much attention has focused on localized physical factors affecting dispersal, studies of oceanic propagule dispersal have often emphasized the role of large-scale factors. We link these two perspectives by exploring how propagule dispersal in the ocean is influenced by the “coastal boundary layer” (CBL), a region of reduced velocities near the shoreline that might substantially modify local-scale dispersal. We used a simple simulation model to demonstrate that accounting for the CBL markedly alters transport distances, the widths of dispersal distributions, and the fraction of larvae retained near their sites of origin (self-retention). Median dispersal distances were up to 59% shorter in simulations with a CBL than in those without. Self-retention of larvae increased by up to 3 orders of magnitude in the presence of CBLs, but only minor changes arose in the long-distance tails of the distributions, resulting in asymmetric, non-Gaussian kernels analogous to those quantified for terrestrial seed dispersal. Because successfully settling larvae are commonly those that remain close to shore and interact with the CBL, ignoring this pervasive oceanographic feature will substantially alter predictions of population self-persistence, estimates of connectivity, and outcomes of metapopulation analyses.
The Journal of Experimental Biology | 2012
Brian Gaylord; Kerry J. Nickols; Laura J. Jurgens
Summary Fluid-dynamic transport and mixing processes affect birth, death, immigration and emigration rates in kelp forests, and can modulate broader community interactions. In the most highly studied canopy-forming kelp, Macrocystis pyrifera (the giant kelp), models of hydrodynamic and oceanographic phenomena influencing spore movement provide bounds on reproduction, quantify patterns of local and regional propagule supply, identify scales of population connectivity, and establish context for agents of early life mortality. Other analyses yield insight into flow-mediated species interactions within kelp forests. In each case, advances emerge from the use of ecomechanical approaches that propagate physical–biological connections at the scale of the individual to higher levels of ecological organization. In systems where physical factors strongly influence population, community or ecosystem properties, such mechanics-based methods promote crucial progress but are just beginning to realize their full potential.
BioScience | 2017
Jennifer O'Leary; Fiorenza Micheli; Laura Airoldi; Charles Boch; Giulio A. De Leo; Robin Elahi; Francesco Ferretti; Nicholas A. J. Graham; Steven Y. Litvin; Natalie H. N. Low; Sarah Lummis; Kerry J. Nickols; Joanne Wong
Abstract The intensity and frequency of climate‐driven disturbances are increasing in coastal marine ecosystems. Understanding the factors that enhance or inhibit ecosystem resilience to climatic disturbance is essential. We surveyed 97 experts in six major coastal biogenic ecosystem types to identify “bright spots” of resilience in the face of climate change. We also evaluated literature that was recommended by the experts that addresses the responses of habitat‐forming species to climatic disturbance. Resilience was commonly reported in the expert surveys (80% of experts). Resilience was observed in all ecosystem types and at multiple locations worldwide. The experts and literature cited remaining biogenic habitat, recruitment/connectivity, physical setting, and management of local‐scale stressors as most important for resilience. These findings suggest that coastal ecosystems may still hold great potential to persist in the face of climate change and that local‐ to regional‐scale management can help buffer global climatic impacts.
Proceedings of the Royal Society B: Biological Sciences | 2016
Sarah O. Hameed; J. Wilson White; Seth H. Miller; Kerry J. Nickols; Steven G. Morgan
Demographic connectivity is fundamental to the persistence and resilience of metapopulations, but our understanding of the link between reproduction and recruitment is notoriously poor in open-coast marine populations. We provide the first evidence of high local retention and limited connectivity among populations spanning 700 km along an open coast in an upwelling system. Using extensive field measurements of fecundity, population size and settlement in concert with a Bayesian inverse modelling approach, we estimated that, on average, Petrolisthes cinctipes larvae disperse only 6.9 km (±25.0 km s.d.) from natal populations, despite spending approximately six weeks in an open-coast system that was once assumed to be broadly dispersive. This estimate differed substantially from our prior dispersal estimate (153.9 km) based on currents and larval duration and behaviour, revealing the importance of employing demographic data in larval dispersal estimates. Based on this estimate, we predict that demographic connectivity occurs predominantly among neighbouring populations less than 30 km apart. Comprehensive studies of larval production, settlement and connectivity are needed to advance an understanding of the ecology and evolution of life in the sea as well as to conserve ecosystems. Our novel approach provides a tractable framework for addressing these questions for species occurring in discrete coastal populations.
Journal of Phycology | 2017
Sarah Tepler Drobnitch; Kerry J. Nickols; Matthew S. Edwards
In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO2 and bicarbonate (HCO3−) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [DIC]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub‐saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave‐exposed versus wave‐protected sites. This study contributes a new field‐oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae.
Ecological Applications | 2014
Scott C. Burgess; Kerry J. Nickols; Chris Griesemer; Lewis A. K. Barnett; Allison G. Dedrick; Erin V. Satterthwaite; Lauren Yamane; Steven G. Morgan; J. Wilson White; Louis W. Botsford
Marine Ecology Progress Series | 2012
Kerry J. Nickols; Brian Gaylord; John L. Largier
Marine Ecology Progress Series | 2013
Kerry J. Nickols; Seth H. Miller; Brian Gaylord; Steven G. Morgan; John L. Largier