Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerry J. Ressler is active.

Publication


Featured researches published by Kerry J. Ressler.


Cell | 1994

Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb

Kerry J. Ressler; Susan L. Sullivan; Linda B. Buck

In the mammalian olfactory system, information from approximately 1000 different odorant receptor types is organized in the nose into four spatial zones. Each zone is a mosaic of randomly distributed neurons expressing different receptor types. In these studies, we have obtained evidence that information highly distributed in the nose is transformed in the olfactory bulb of the brain into a highly organized spatial map. We find that specific odorant receptor gene probes hybridize in situ to small, and distinct, subsets of olfactory bulb glomeruli. The spatial and numerical characteristics of the patterns of hybridization that we observe with different receptor probes indicate that, in the olfactory bulb, olfactory information undergoes a remarkable organization into a fine, and perhaps stereotyped, spatial map. In our view, this map is in essence an epitope map, whose approximately 1000 distinct components are used in a multitude of different combinations to discriminate a vast array of different odors.


JAMA | 2008

Association of FKBP5 Polymorphisms and Childhood Abuse With Risk of Posttraumatic Stress Disorder Symptoms in Adults

Elisabeth B. Binder; Rebekah Bradley; Wei Liu; Michael P. Epstein; Todd C. Deveau; Kristina B. Mercer; Yi-Lang Tang; Charles F. Gillespie; Christine Heim; Charles B. Nemeroff; Ann C. Schwartz; Joseph F. Cubells; Kerry J. Ressler

CONTEXT In addition to trauma exposure, other factors contribute to risk for development of posttraumatic stress disorder (PTSD) in adulthood. Both genetic and environmental factors are contributory, with child abuse providing significant risk liability. OBJECTIVE To increase understanding of genetic and environmental risk factors as well as their interaction in the development of PTSD by gene x environment interactions of child abuse, level of non-child abuse trauma exposure, and genetic polymorphisms at the stress-related gene FKBP5. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study examining genetic and psychological risk factors in 900 nonpsychiatric clinic patients (762 included for all genotype studies) with significant levels of childhood abuse as well as non-child abuse trauma using a verbally presented survey combined with single-nucleotide polymorphism (SNP) genotyping. Participants were primarily urban, low-income, black (>95%) men and women seeking care in the general medical care and obstetrics-gynecology clinics of an urban public hospital in Atlanta, Georgia, between 2005 and 2007. MAIN OUTCOME MEASURES Severity of adult PTSD symptomatology, measured with the modified PTSD Symptom Scale, non-child abuse (primarily adult) trauma exposure and child abuse measured using the traumatic events inventory and 8 SNPs spanning the FKBP5 locus. RESULTS Level of child abuse and non-child abuse trauma each separately predicted level of adult PTSD symptomatology (mean [SD], PTSD Symptom Scale for no child abuse, 8.03 [10.48] vs > or =2 types of abuse, 20.93 [14.32]; and for no non-child abuse trauma, 3.58 [6.27] vs > or =4 types, 16.74 [12.90]; P < .001). Although FKBP5 SNPs did not directly predict PTSD symptom outcome or interact with level of non-child abuse trauma to predict PTSD symptom severity, 4 SNPs in the FKBP5 locus significantly interacted (rs9296158, rs3800373, rs1360780, and rs9470080; minimum P = .0004) with the severity of child abuse to predict level of adult PTSD symptoms after correcting for multiple testing. This gene x environment interaction remained significant when controlling for depression severity scores, age, sex, levels of non-child abuse trauma exposure, and genetic ancestry. This genetic interaction was also paralleled by FKBP5 genotype-dependent and PTSD-dependent effects on glucocorticoid receptor sensitivity, measured by the dexamethasone suppression test. CONCLUSIONS Four SNPs of the FKBP5 gene interacted with severity of child abuse as a predictor of adult PTSD symptoms. There were no main effects of the SNPs on PTSD symptoms and no significant genetic interactions with level of non-child abuse trauma as predictor of adult PTSD symptoms, suggesting a potential gene-childhood environment interaction for adult PTSD.


Cell | 1993

A zonal organization of odorant receptor gene expression in the olfactory epithelium

Kerry J. Ressler; Susan L. Sullivan; Linda B. Buck

The mechanisms by which mammals discriminate a vast array of diverse odors are poorly understood. To gain insight into the organizational strategies underlying this discriminatory capacity, we have examined the spatial distribution of odorant receptor RNAs in the mouse olfactory epithelium. We have observed topographically distinct patterns of receptor RNAs suggesting that the nasal cavity is divided into a series of expression zones. The zones exhibit bilateral symmetry in the two nasal cavities and are organized along the dorsal-ventral and medial-lateral axes. Within each zone, a neuron may select a gene for expression from a zonal gene set via a stochastic mechanism. The observed zonal patterning may serve as an initial organizing step in olfactory sensory information coding.


Depression and Anxiety | 2000

ROLE OF SEROTONERGIC AND NORADRENERGIC SYSTEMS IN THE PATHOPHYSIOLOGY OF DEPRESSION AND ANXIETY DISORDERS

Kerry J. Ressler; Charles B. Nemeroff

There is abundant evidence for abnormalities of the norepinephrine (NE) and serotonin (5HT) neurotransmitter systems in depression and anxiety disorders. The majority of evidence supports underactivation of serotonergic function and complex dysregulation of noradrenergic function, most consistent with overactivation of this system. Treatment for these disorders requires perturbation of these systems. Reproducible increases in serotonergic function and decreases in noradrenergic function accompany treatment with antidepressants, and these alterations may be necessary for antidepressant efficacy. Dysregulation of these systems clearly mediates many symptoms of depression and anxiety. The underlying causes of these disorders, however, are less likely to be found within the NE and 5HT systems, per se. Rather their dysfunction is likely due to their role in modulating, and being modulated by, other neurobiologic systems that together mediate the symptoms of affective illness. Clarification of noradrenergic and serotonergic modulation of various brain regions may yield a greater understanding of specific symptomatology, as well as the underlying circuitry involved in euthymic and abnormal mood and anxiety states. Disrupted cortical regulation may mediate impaired concentration and memory, together with uncontrollable worry. Hypothalamic abnormalities likely contribute to altered appetite, libido, and autonomic symptoms. Thalamic and brainstem dysregulation contributes to altered sleep and arousal states. Finally, abnormal modulation of cortical‐hippocampal‐amygdala pathways may contribute to chronically hypersensitive stress and fear responses, possibly mediating features of anxiety, anhedonia, aggression, and affective dyscontrol. The continued appreciation of the neural circuitry mediating affective states and their modulation by neurotransmitter systems should further the understanding of the pathophysiology of affective and anxiety disorders. Depression and Anxiety, Volume 12, Supplement 1:2–19, 2000.


Nature Neuroscience | 2013

Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions

Torsten Klengel; Divya Mehta; Christoph Anacker; Monika Rex-Haffner; Jens C. Pruessner; Carmine M. Pariante; Thaddeus W.W. Pace; Kristina B. Mercer; Helen S. Mayberg; Bekh Bradley; Charles B. Nemeroff; Florian Holsboer; Christine Heim; Kerry J. Ressler; Theo Rein; Elisabeth B. Binder

Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders.


Nature Neuroscience | 2007

Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic

Kerry J. Ressler; Helen S. Mayberg

Recent decades have witnessed tremendous advances in the neuroscience of emotion, learning and memory, and in animal models for understanding depression and anxiety. This review focuses on new rationally designed psychiatric treatments derived from preclinical human and animal studies. Nonpharmacological treatments that affect disrupted emotion circuits include vagal nerve stimulation, rapid transcranial magnetic stimulation and deep brain stimulation, all borrowed from neurological interventions that attempt to target known pathological foci. Other approaches include drugs that are given in relation to specific learning events to enhance or disrupt endogenous emotional learning processes. Imaging data suggest that common regions of brain activation are targeted with pharmacological and somatic treatments as well as with the emotional learning in psychotherapy. Although many of these approaches are experimental, the rapidly developing understanding of emotional circuit regulation is likely to provide exciting and powerful future treatments for debilitating mood and anxiety disorders.


Nature Neuroscience | 2014

Parental olfactory experience influences behavior and neural structure in subsequent generations

Brian G. Dias; Kerry J. Ressler

Using olfactory molecular specificity, we examined the inheritance of parental traumatic exposure, a phenomenon that has been frequently observed, but not understood. We subjected F0 mice to odor fear conditioning before conception and found that subsequently conceived F1 and F2 generations had an increased behavioral sensitivity to the F0-conditioned odor, but not to other odors. When an odor (acetophenone) that activates a known odorant receptor (Olfr151) was used to condition F0 mice, the behavioral sensitivity of the F1 and F2 generations to acetophenone was complemented by an enhanced neuroanatomical representation of the Olfr151 pathway. Bisulfite sequencing of sperm DNA from conditioned F0 males and F1 naive offspring revealed CpG hypomethylation in the Olfr151 gene. In addition, in vitro fertilization, F2 inheritance and cross-fostering revealed that these transgenerational effects are inherited via parental gametes. Our findings provide a framework for addressing how environmental information may be inherited transgenerationally at behavioral, neuroanatomical and epigenetic levels.


Archives of General Psychiatry | 2008

Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene

Rebekah Bradley; Elisabeth B. Binder; Michael P. Epstein; Yi-Lang Tang; Hemu P. Nair; Wei Liu; Charles F. Gillespie; Tiina Berg; Mark Evces; D. Jeffrey Newport; Zachary N. Stowe; Christine Heim; Charles B. Nemeroff; Ann C. Schwartz; Joseph F. Cubells; Kerry J. Ressler

CONTEXT Genetic inheritance and developmental life stress both contribute to major depressive disorder in adults. Child abuse and trauma alter the endogenous stress response, principally corticotropin-releasing hormone and its downstream effectors, suggesting that a gene x environment interaction at this locus may be important in depression. OBJECTIVE To examine whether the effects of child abuse on adult depressive symptoms are moderated by genetic polymorphisms within the corticotropin-releasing hormone type 1 receptor (CRHR1) gene. DESIGN Association study examining gene x environment interactions between genetic polymorphisms at the CRHR1 locus and measures of child abuse on adult depressive symptoms. SETTING General medical clinics of a large, public, urban hospital and Emory University, Atlanta, Georgia. PARTICIPANTS The primary participant population was 97.4% African American, of low socioeconomic status, and with high rates of lifetime trauma (n = 422). A supportive independent sample (n = 199) was distinct both ethnically (87.7% Caucasian) and socioeconomically (less impoverished). MAIN OUTCOME MEASURES Beck Depression Inventory scores and history of major depressive disorder by the Structured Clinical Interview for DSM-IV Axis I Disorders. RESULTS Fifteen single-nucleotide polymorphisms spanning 57 kilobases of the CRHR1 gene were examined. We found significant gene x environment interactions with multiple individual single-nucleotide polymorphisms (eg, rs110402, P = .008) as well as with a common haplotype spanning intron 1 (P < .001). Specific CRHR1 polymorphisms appeared to moderate the effect of child abuse on the risk for adult depressive symptoms. These protective effects were supported with similar findings in a second independent sample (n = 199). CONCLUSIONS These data support the corticotropin-releasing hormone hypothesis of depression and suggest that a gene x environment interaction is important for the expression of depressive symptoms in adults with CRHR1 risk or protective alleles who have a history of child abuse.


Nature | 2011

Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor

Kerry J. Ressler; Kristina B. Mercer; Bekh Bradley; Tanja Jovanovic; Amy Mahan; Kimberly Kerley; Seth D. Norrholm; Varun Kilaru; Alicia K. Smith; Amanda J. Myers; Manuel Ramirez; Anzhelika Engel; Sayamwong E. Hammack; Donna Toufexis; Karen M. Braas; Elisabeth B. Binder; Victor May

Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP–PAC1 receptor pathway has a role in human psychological stress responses, such as post-traumatic stress disorder (PTSD). Here we find, in heavily traumatized subjects, a sex-specific association of PACAP blood levels with fear physiology, PTSD diagnosis and symptoms in females. We examined 44 single nucleotide polymorphisms (SNPs) spanning the PACAP (encoded by ADCYAP1) and PAC1 (encoded by ADCYAP1R1) genes, demonstrating a sex-specific association with PTSD. A single SNP in a putative oestrogen response element within ADCYAP1R1, rs2267735, predicts PTSD diagnosis and symptoms in females only. This SNP also associates with fear discrimination and with ADCYAP1R1 messenger RNA expression in human brain. Methylation of ADCYAP1R1 in peripheral blood is also associated with PTSD. Complementing these human data, ADCYAP1R1 mRNA is induced with fear conditioning or oestrogen replacement in rodent models. These data suggest that perturbations in the PACAP–PAC1 pathway are involved in abnormal stress responses underlying PTSD. These sex-specific effects may occur via oestrogen regulation of ADCYAP1R1. PACAP levels and ADCYAP1R1 SNPs may serve as useful biomarkers to further our mechanistic understanding of PTSD.


Molecular Psychiatry | 2007

Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories

Scott A. Heldt; Lisa M. Stanek; Jasmeer P. Chhatwal; Kerry J. Ressler

Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the synaptic plasticity underlying the acquisition and/or consolidation of certain forms of memory. Additionally, a role has been suggested for neurotrophin function within the hippocampus in protection from anxiety and depressive disorders. Understanding the function of this important gene in adult animals has been limited however, because standard knockouts are confounded by gene effects during development. There are no BDNF receptor-specific pharmacological agents, and infusions of neuropeptides or antibodies have other significant limitations. In these studies, we injected a lentivirus expressing Cre recombinase bilaterally into the dorsal hippocampus in adult mice floxed at the BDNF locus to facilitate the site-specific deletion of the BDNF gene in adult animals. Significant decreases in BDNF mRNA expression are demonstrated in the hippocampi of lenti-Cre-infected animals compared with control lenti-GFP-infected animals. Behaviorally, there were no significant effects of BDNF deletion on locomotion or baseline anxiety measured with startle. In contrast, hippocampal-specific BDNF deletions impair novel object recognition and spatial learning as demonstrated with the Morris water maze. Although there were no effects on the acquisition or expression fear, animals with BDNF deletions show significantly reduced extinction of conditioned fear as measured both with fear-potentiated startle and freezing. These data suggest that the cognitive deficits and impairment in extinction of aversive memory found in depression and anxiety disorders may be directly related to decreased hippocampal BDNF.

Collaboration


Dive into the Kerry J. Ressler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge