Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerry J. Schimenti is active.

Publication


Featured researches published by Kerry J. Schimenti.


Molecular Cell | 1998

Meiotic Prophase Arrest with Failure of Chromosome Synapsis in Mice Deficient for Dmc1, a Germline-Specific RecA Homolog

Douglas L. Pittman; Kerry J. Schimenti; Lawriston A. Wilson; Deborah M. Cooper; Ember Brignull; Mary Ann Handel; John C. Schimenti

DMC1 is a meiosis-specific gene first discovered in yeast that encodes a protein with homology to RecA and may be component of recombination nodules. Yeast dmc1 mutants are defective in crossing over and synaptonemal complex (SC) formation, and arrest in late prophase of meiosis I. We have generated a null mutation in the Dmc1 gene in mice and show that homozygous mutant males and females are sterile with arrest of gametogenesis in the first meiotic prophase. Chromosomes in mutant spermatocytes fail to synapse, despite the formation of axial elements that are the precursor to the SC. The strong similarity of phenotypes in Dmc1-deficient mice and yeast suggests that meiotic mechanisms have been highly conserved through evolution.


Nature Genetics | 2000

Mouse mutants from chemically mutagenized embryonic stem cells

Robert J. Munroe; Rebecca A. Bergstrom; Qing Yin Zheng; Brian J. Libby; Richard S. Smith; Simon W. M. John; Kerry J. Schimenti; Victoria L. Browning; John C. Schimenti

The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain and interlocus variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chimaeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives.


PLOS Genetics | 2005

Mutation in mouse hei10, an e3 ubiquitin ligase, disrupts meiotic crossing over.

Jeremy O. Ward; Laura G. Reinholdt; William W. Motley; Lisa M Niswander; Dekker C Deacon; Laurie B. Griffin; Kristofor K Langlais; Vickie L. Backus; Kerry J. Schimenti; Marilyn J. O'Brien; John J. Eppig; John C. Schimenti

Crossing over during meiotic prophase I is required for sexual reproduction in mice and contributes to genome-wide genetic diversity. Here we report on the characterization of an N-ethyl-N-nitrosourea-induced, recessive allele called mei4, which causes sterility in both sexes owing to meiotic defects. In mutant spermatocytes, chromosomes fail to congress properly at the metaphase plate, leading to arrest and apoptosis before the first meiotic division. Mutant oocytes have a similar chromosomal phenotype but in vitro can undergo meiotic divisions and fertilization before arresting. During late meiotic prophase in mei4 mutant males, absence of cyclin dependent kinase 2 and mismatch repair protein association from chromosome cores is correlated with the premature separation of bivalents at diplonema owing to lack of chiasmata. We have identified the causative mutation, a transversion in the 5′ splice donor site of exon 1 in the mouse ortholog of Human Enhancer of Invasion 10 (Hei10; also known as Gm288 in mouse and CCNB1IP1 in human), a putative B-type cyclin E3 ubiquitin ligase. Importantly, orthologs of Hei10 are found exclusively in deuterostomes and not in more ancestral protostomes such as yeast, worms, or flies. The cloning and characterization of the mei4 allele of Hei10 demonstrates a novel link between cell cycle regulation and mismatch repair during prophase I.


Biology of Reproduction | 2003

Toward the Genetics of Mammalian Reproduction: Induction and Mapping of Gametogenesis Mutants in Mice

Jeremy O. Ward; Laura G. Reinholdt; Suzanne A. Hartford; Lawriston A. Wilson; Robert J. Munroe; Kerry J. Schimenti; Brian J. Libby; Marilyn J. O'Brien; Janice K. Pendola; John J. Eppig; John C. Schimenti

Abstract The genetic control of mammalian gametogenesis is inadequately characterized because of a lack of mutations causing infertility. To further the discovery of genes required for mammalian gametogenesis, phenotype-driven screens were performed in mice using random chemical mutagenesis of whole animals and embryonic stem cells. Eleven initial mutations are reported here that affect proliferation of germ cells, meiosis, spermiogenesis, and spermiation. Nine of the mutations have been mapped genetically. These preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery. This report demonstrates the efficacy and expediency of mutagenesis to identify new genes required for mammalian gamete development.


Developmental Biology | 2008

The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition

Dana L. Philipps; Karen Wigglesworth; Suzanne A. Hartford; Fengyun Sun; Shrivatsav Pattabiraman; Kerry J. Schimenti; Mary Ann Handel; John J. Eppig; John C. Schimenti

A novel mutation, repro5, was isolated in a forward genetic screen for infertility mutations induced by ENU mutagenesis. Homozygous mutant mice were phenotypically normal but were infertile. Oocytes from mutant females appeared normal, but were severely maturation-defective in that they had reduced ability to progress to metaphase II (MII), and those reaching MII were unable to progress beyond the two pronuclei stage following in vitro fertilization (IVF). Mutant males exhibited defective spermiogenesis, resulting in oligoasthenoteratospermia. Genetic mapping, positional cloning, and complementation studies with a disruption allele led to the identification of a mutation in Brwd1 (Bromodomain and WD repeat domain containing 1) as the causative lesion. Bromodomain-containing proteins typically interact with regions of chromatin containing histones hyperacetylated at lysine residues, a characteristic of chromatin in early spermiogenesis before eventual replacement of histones by the protamines. Previous data indicated that Brwd1 is broadly expressed, encoding a putative transcriptional regulator that is believed to act on chromatin through interactions with the Brg1-dependent SWI/SNF chromatin-remodeling pathway. Brwd1 represents one of a small number of genes whose elimination disrupts gametogenesis in both sexes after the major events of meiotic prophase I have been completed.


Development | 2011

A-MYB (MYBL1) transcription factor is a master regulator of male meiosis

Ewelina Bolcun-Filas; Laura A. Bannister; Alex Barash; Kerry J. Schimenti; Suzanne A. Hartford; John J. Eppig; Mary Ann Handel; Lishuang Shen; John C. Schimenti

The transcriptional regulation of mammalian meiosis is poorly characterized, owing to few genetic and ex vivo models. From a genetic screen, we identify the transcription factor MYBL1 as a male-specific master regulator of several crucial meiotic processes. Spermatocytes bearing a novel separation-of-function allele (Mybl1repro9) had subtle defects in autosome synapsis in pachynema, a high incidence of unsynapsed sex chromosomes, incomplete double-strand break repair on synapsed pachytene chromosomes and a lack of crossing over. MYBL1 protein appears in pachynema, and its mutation caused specific alterations in expression of diverse genes, including some translated postmeiotically. These data, coupled with chromatin immunoprecipitation (ChIP-chip) experiments and bioinformatic analysis of promoters, identified direct targets of MYBL1 regulation. The results reveal that MYBL1 is a master regulator of meiotic genes that are involved in multiple processes in spermatocytes, particularly those required for cell cycle progression through pachynema.


Mammalian Genome | 1998

Factors affecting ectopic gene conversion in mice

Deoborah M. Cooper; Kerry J. Schimenti; John C. Schimenti

Duplicated genes and repetitive sequences are distributed throughout the genomes of complex organisms. The homology between related sequences can promote nonallelic (ectopic) recombination, including gene conversion and reciprocal exchange. Resolution of these events can result in translocations, deletions, or other harmful rearrangements. In yeast, ectopic recombination between sequences on nonhomologous chromosomes occurs at high frequency. Because the mammalian genome is replete with duplicated sequences and repetitive elements, high levels of ectopic exchange would cause aneuploidy and genome instability. To understand the factors regulating ectopic recombination in mice, we evaluated the effects of homology length on gene conversion between unlinked sequences in the male germline. Previously, we found high levels of gene conversion between lacZ transgenes containing 2557 bp of homology. We report here that genetic background can play a major role in ectopic recombination; frequency of gene conversion was reduced by more than an order of magnitude by transferring the transgenes from a CF1 strain background to C57BL/6J. Additionally, conversion rates decreased as the homology length decreased. Sequences sharing 1214 bp of sequence identity underwent ectopic conversion less frequently than a pair sharing 2557 bp of identity, while 624 bp was insufficient to catalyze gene conversion at significant levels. These results suggest that the germline recombination machinery in mammals has evolved in a way that prevents high levels of ectopic recombination between smaller classes of repetitive sequences, such as the Alu family. Additionally, genomic location appeared to influence the availability of sequences for ectopic recombination.


Mutation Research | 1994

A recombination-based transgenic mouse system for genotoxicity testing.

J.Ramana Murti; Kerry J. Schimenti; John C. Schimenti

It is well established that mutagens induce recombination in cultured cells and experimental organisms. Presumably, this is a consequence of the DNA-damage-triggering cellular-repair mechanisms. The relationship between recombination and mutagenicity has been exploited in submammalian organisms, such as yeast, to assay the ability of chemical agents and radiation to induce a form of recombination called gene conversion--the non-reciprocal transfer of genetic information. This work has demonstrated the efficacy of predicting mutagenicity on the basis of recombination induction. Here, we describe the utilization of a transgenic mouse system for efficient detection of germ-line gene-conversion events as a mutagen-screening tool. These mice contain two mutually defective reporter (lacZ) genes under the regulatory control of a spermatogenesis-specific promoter. A particular intrachromosomal gene conversion event must occur for the generation of functional lacZ activity. Conversion events are visualized by histochemical staining or flow cytometric analysis of transgenic spermatids. The highly mutagenic compound chlorambucil induced a several fold percentage-wise increase of lacZ-positive spermatids, whereas acrylamide, a weak genotoxin, produced no marked increase in converted spermatids. The results indicate that recombination-based transgenic mouse models for genotoxin screening present a viable option for inexpensive and rapid whole-animal mutagen testing. The particular mice we describe may ultimately prove to be a useful tool for identifying agents which can cause heritable genetic mutations in humans.


Gene | 1997

Molecular analysis of gene conversion in spermatids from transgenic mice.

William H. Hanneman; Kerry J. Schimenti; John C. Schimenti

Investigations into the mechanisms and properties of gene conversion in mammals are greatly restricted by the inability to recover all the products of a meiosis. Additionally, the study of this process has been hampered by the lack of visible markers to detect gene conversion, especially when the events are rare. In previous work, we developed a transgenic system for detection and quantitation of gene conversion events in the germline of mice (Murti, J.R., Bumbulis, M., Schimenti, J.C., 1992. High frequency germline gene conversion in transgenic mice. Mol. Cell. Biol. 12, 2545-2552) that could be exploited as an assay for recombinogenic chemicals (Murti, J.R, Schimenti, K.J., Schimenti, J.C., 1994. A recombination-based transgenic mouse system for genotoxicity testing. Mutat. Res. 307, 583-595). A specific intrachromosomal gene conversion event between two complementarily defective lacZ genes resulted in the production of beta-galactosidase in spermatids, enabling a measurement of conversion frequency. Here, we report that the anticancer drug, cisplatin, increased gene conversion in meiotic stage cells in these transgenic mice. Furthermore, a method was developed for direct molecular analysis of transgene conversion events in single or pooled lacZ-positive spermatids. The ability to identify gametes that have undergone a rare gene conversion event, followed by molecular amplification of the recombinant gene, should make it possible to investigate the mechanisms of genetic recombination in mammals in greater detail than previously possible.


Oncogene | 2014

Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress

Marsha D. Wallace; Teresa L. Southard; Kerry J. Schimenti; John C. Schimenti

Defective DNA replication can result in genomic instability, cancer and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4Chaos3/Chaos3 (‘Chaos3’) mouse model that, by virtue of an amino-acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ataxia telangiectasia-mutated (ATM) double-strand break response pathway (Atm, p21/Cdkn1a and Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. Atm deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9–1–1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development.

Collaboration


Dive into the Kerry J. Schimenti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawriston A. Wilson

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge