Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerry L. Burnstein is active.

Publication


Featured researches published by Kerry L. Burnstein.


Pharmacological Reviews | 2006

International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors.

Nick Z. Lu; Suzanne E. Wardell; Kerry L. Burnstein; Donald B. DeFranco; Peter J. Fuller; Vincent Giguère; Richard B. Hochberg; Lorraine I. McKay; Jack Michel Renoir; Nancy L. Weigel; Elizabeth M. Wilson; Donald P. McDonnell; John A. Cidlowski

The glucocorticoid receptor (GR[1][1]), mineralocorticoid receptor (MR), progesterone receptor (PR), and androgen receptor (AR) are classic members of the nuclear receptor superfamily, composing subfamily 3C. Members of this subfamily are among those receptors that were cloned the earliest, with the


Endocrinology | 1998

Antiproliferative Effect of 1α,25-Dihydroxyvitamin D3 in Human Prostate Cancer Cell Line LNCaP Involves Reduction of Cyclin-Dependent Kinase 2 Activity and Persistent G1 Accumulation

Sen Hong Zhuang; Kerry L. Burnstein

1α,25-Dihydroxyvitamin D3 (1,25 D), the most active metabolite of vitamin D3, exerts antiproliferative and prodifferentiating effects on some human prostate cancer cell lines. We previously reported an inverse relationship between functional vitamin D receptor (VDR) levels and antiproliferative response to 1,25 D in two human prostate cancer cell lines, LNCaP and ALVA 31. Although LNCaP cells are far more sensitive to growth inhibition by 1,25 D than ALVA 31 cells, LNCaP express approximately half the number of VDR as ALVA 31. Two other human prostate cancer cell lines studied, PC3 and DU145, express lower levels of functional VDR and are relatively insensitive to growth inhibition by 1,25 D. In this report, we investigated potential mechanisms of the variable antiproliferative activity of 1,25 D. In PC3 cells stably expressing VDR [PC3(VDR)] at levels comparable to LNCaP, 1,25 D treatment resulted in only moderate growth inhibition. These results further support the contention that VDR expression, althou...


Steroids | 1991

Autoregulation of glucocorticoid receptor gene expression

Kerry L. Burnstein; Deborah L. Bellingham; Christine M. Jewell; Frances E. Powell-Oliver; John A. Cidlowski

Glucocorticoid receptors are members of a highly conserved family of steroid receptor proteins, which are ligand-dependent transcription factors. Previous studies have shown that the presence of functional glucocorticoid receptors is a prerequisite for manifestation of cellular responses to hormone. Glucocorticoid receptors undergo down-regulation following treatment with glucocorticoids. To define the molecular mechanisms that are involved in this process we have analyzed the down-regulation of glucocorticoid receptors both in HeLa cells, which contain endogenous receptors, and in cells containing receptors that have been introduced by DNA transfection. Our results show that cells that contain glucocorticoid receptors--either endogenous or transfected--undergo down-regulation of steroid-binding capabilities, as well as reductions in receptor protein and mRNA levels, in a remarkably similar fashion. DNA sequences in the coding region of the human glucocorticoid receptor cDNA appear to be sufficient to account for down-regulation of receptor. This novel finding suggests that unique mechanisms are involved in controlling glucocorticoid receptor homeostasis.


Molecular and Cellular Endocrinology | 1997

Vitamin D receptor content and transcriptional activity do not fully predict antiproliferative effects of vitamin D in human prostate cancer cell lines

Sen Hong Zhuang; Gary G. Schwartz; D.J. Cameron; Kerry L. Burnstein

Prostate cancer cell lines exhibit variable growth suppression by the hormonal form of vitamin D3, 1,25-Dihydroxyvitamin D3 [1,25 (OH)2D] (1,25 D3). To understand the molecular basis for this differential sensitivity to 1,25 D3, we compared growth response to 1,25 d3, vitamin D receptor (VDR) content and VDR transcriptional activity in four well-characterized human prostate cancer cell lines: LNCaP, DU145, PC-3 and ALVA-31. In PC-3 and DU145 cells, relative lack of growth inhibition by 1,25 D3 (< 10% inhibition) correlates with very low levels of VDR (9-15 fmol/mg protein) compared to classical vitamin D3 target tissues (approximately 75-200 fmol/mg protein). Transfection of DU145 and PC-3 cells with a VDR cDNA expression vector is sufficient to establish growth sensitivity to 1,25 D3, suggesting that low VDR levels are responsible for the failure of these cell lines to respond to 1,24 D3. LNCaP cells are highly sensitive to growth inhibition by 1.25 D3 (approximately 55% inhibition) and contain approximately 2-3-fold more VDR (25 fmol/mg) than the relatively 1,25 D3-insensitive PC-3 and DU145 cell lines. However, ALVA-31 cells display less than 20% growth inhibition to 1.25 D3 although they contain the highest levels of VDR (45 fmol/mg) of the four cell lines. Thus, sensitivity to growth inhibition by 1,25 D3 does not correlate with VDR content in ALVA-31 and LNCaP cells. This lack of correlation between VDR density and growth responses to 1,25 D3 led us to investigate VDR-mediated gene transcription in these cell lines. We employed two different naturally occurring vitamin D response elements (VDREs) linked to a reporter gene. Reporter gene activation by 1,25 D3 correlated well with VDR content in all four cell lines. Therefore, compared to LNCaP cells, decreased sensitivity of ALVA-31 to growth inhibition by 1,25 D3 is not due to a decrease in the general transcriptional activity of VDR. We conclude that growth inhibition by 1,25 D3 in prostate cancer cells requires VDR but that this response is modulated by non-receptor factors that are cell line-specific.


The Journal of Steroid Biochemistry and Molecular Biology | 2002

25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer

Lyman W Whitlatch; Michael V. Young; Gary G. Schwartz; John N. Flanagan; Kerry L. Burnstein; Bal L. Lokeshwar; Edwin S. Rich; Michael F. Holick; Tai C. Chen

The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.


Journal of Cellular Biochemistry | 2005

Regulation of androgen receptor levels: Implications for prostate cancer progression and therapy

Kerry L. Burnstein

Androgen deprivation has been the standard therapy for advanced and metastatic prostate cancer for over half a century, as prostate tumors are initially dependent on androgens for growth and survival. Unfortunately, in most patients undergoing androgen ablation, relapse (recurrent tumor growth) eventually occurs. The actions of the principal androgens, testosterone and dihydrotestosterone (DHT), are mediated via androgen receptors (ARs), ligand‐activated transcription factors that belong to the nuclear receptor superfamily. Because of the presence of transcriptionally active ARs in tumors from recurrent or androgen‐independent disease, there is a heightened interest in new therapeutic paradigms that target the AR and its regulatory pathways. The regulation of AR levels is highly complex with control exerted by several pathways and in a cell‐, tissue‐, and developmental‐stage specific manner. Androgens are important regulators of AR mRNA and protein through transcriptional and post‐transcriptional mechanisms. This article reviews the evidence implicating the AR in recurrent prostate cancer and discusses the multiple mechanisms that regulate AR levels in normal and neoplastic cells. The complexity of AR regulation suggests that there will be an ample array of potential new drug targets for modulating levels of this receptor, a key signaling molecule in prostate cancer.


Archives of Toxicology | 2003

A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells

Ryoichi Kizu; Kazumasa Okamura; Akira Toriba; Hiroshi Kakishima; Atsushi Mizokami; Kerry L. Burnstein; Kazuichi Hayakawa

The role of aryl hydrocarbon receptor (AhR) on the antiandrogenic effects of polycyclic aromatic hydrocarbons (PAHs) was studied in LNCaP cells. The PAHs used in this study were chrysene (Chr), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), anthracene (Ant) and pyrene (Pyr). Chr, BkF and BaP acted as AhR agonists in LNCaP cells, while Ant and Pyr did not. The antiandrogenic effects of the PAHs were evaluated on the basis of regulation of prostate-specific antigen (PSA) mRNA and protein levels by 5α-dihydrotestosterone (DHT). Chr, BkF and BaP exhibited an antiandrogenic effect, but Ant and Pyr did not. α-Naphthoflavone (α-NF), an AhR antagonist, reversed the antiandrogen action of Chr, BkF and BaP, suggesting a requirement for activated AhR. The antiandrogenic PAHs did not significantly decrease androgen receptor (AR) levels or cellular DHT concentrations. Gel mobility shift assays revealed that Chr, BkF and BaP inhibited the binding of AR in nuclear extracts to oligonucleotide probes containing the AR-responsive element (ARE), whereas Ant and Pyr had no effect. The antiandrogenic PAHs elevated mRNA levels of c-fos and c-jun. Since activator protein-1 (AP-1), a heterodimer of c-jun and c-fos proteins, is known to inhibit binding of AR to ARE by protein–protein interaction with AR, the findings in the present study suggest a possible involvement of AP-1 in the antiandrogenic effects of PAHs acting as AhR agonists. These results suggest that AhR can stimulate AP-1 expression resulting in inhibition of the binding of AR to ARE in the transcription regulatory region of target genes such as PSA.


Steroids | 1996

Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells

Jia Le Dai; Carol A. Maiorino; Peter J. Gkonos; Kerry L. Burnstein

The expression of the androgen receptor (AR) gene is regulated by androgens. Although androgens down-regulate AR mRNA in most cell lines and tissues, including the prostate, up-regulation occurs in some tissues. Androgen-mediated reduction in AR mRNA is reproduced in COS1 cells and in the androgen-sensitive human prostate cancer cell line LNCaP when each expresses the AR cDNA. We have previously established that the AR cDNA contains the requisite sequences for this down-regulation. Here we shown that androgen promoted up-regulation of AR mRNA in two androgen-independent human prostate cancer cell lines, PC3 and DU145, when each was transfected with a human AR cDNA. This effect was due to the AR cDNA and not to the heterologous promoter driving AR expression. In addition to up-regulation of AR mRNA, androgen induced comparable increases in AR protein levels in PC3 cells stably expressing an AR cDNA (PC3/AR). Up-regulation of AR in PC3/AR cells was accompanied by failure of these cells to undergo desensitization or inactivation of AR following prolonged (96 h) androgen administration, whereas the same conditions resulted in desensitization of AR transactivation in LNCaP cells and in CVl cells that stably express the AR cDNA. Androgen treatment of PC3/AR cells resulted in induction of an androgen-regulated reporter gene (MMTV-CAT) as well as the native prostate-specific antigen gene, which is silent in untransfected PC3 but is androgen up-regulated in LNCaP and in the prostate. These results suggest that ectopic expression of AR in androgen-independent prostate cancer cell lines establishes both typical and atypical androgenic responses in a target gene-specific manner. Androgenic up-regulation of AR cDNA expression may be due to distinct signaling mechanisms that influence androgen action in androgen-independent prostate cancer cells.


The Journal of Steroid Biochemistry and Molecular Biology | 1995

Immunocytochemical analysis of hormone mediated nuclear translocation of wild type and mutant glucocorticoid receptors

Christine M. Jewell; Jeffrey C. Webster; Kerry L. Burnstein; Madhadbananda Sar; Jack E. Bodwell; John A. Cidlowski

We have analyzed structural and functional features of the human glucocorticoid receptor (hGR) for their effects on receptor subcellular distribution. COS 1 cells transiently transfected with wild type and mutant hGR cDNAs were assessed immunocytochemically using well-characterized antipeptide antibodies to the hGR. The effect of administration of steroid hormones (and the antiglucocorticoid RU486) on receptor localization was evaluated. Unliganded wild type receptors expressed in COS 1 cells were predominately cytoplasmic. Addition of glucocorticoids or the glucocorticoid receptor antagonist, RU486, resulted in complete translocation of these receptors into the nucleus whereas non-glucocorticoid steroids or dibutyryl cAMP were not effective in promoting nuclear translocation. Thus, nuclear translocation was specific for steroids capable of high affinity binding to the hGR. To elucidate the potential role of receptor domains in receptor localization, COS 1 cells transiently transfected with various receptor cDNA mutants were analyzed in a similar manner. Translocation of an hGR deletion mutant lacking the majority of the amino terminus (deletion of amino acids 77-262) was identical to the wild type receptor despite the absence of a transactivation domain. Receptors in which the DNA binding domain was either partially or totally deleted showed an impaired capacity to undergo hormone-inducible nuclear translocation. Deletion of the hinge region of the hGR (which also contains part of the nuclear localization signal, NL1) resulted in receptor localization in the cytoplasm. Mutants in the ligand binding domain exhibited two localization phenotypes, exclusively nuclear or cytoplasmic. Receptor mutants truncated after amino acid 550 were found in the nucleus in the presence and absence of hormone consistent with the existence of nuclear localization inhibitory sequences in the ligand binding domain of the receptor. However, a linker insertion mutant (at amino acid 582) which results in a receptor deficient in ligand binding did not undergo nuclear translocation indicating that nuclear localization inhibitory sequences were intact in this mutant. The role of receptor phosphorylation on hormone induced nuclear translocation was also examined. Mouse glucocorticoid receptors which contained mutations of certain hormone inducible phosphorylation sites exhibited translocation properties similar to wild type mGR indicating that these phosphorylation sites on the receptor do not play a major role in hormone inducible nuclear translocation.


Molecular and Cellular Endocrinology | 1995

Androgen and glucocorticoid regulation of androgen receptor cDNA expression

Kerry L. Burnstein; Carol A. Maiorino; Jia Le Dai; D.J. Cameron

Androgen receptor (AR) levels are regulated by androgens, other steroids and non-steroidal hormones via complex, tissue-specific processes. Since alterations in receptor levels may influence cellular sensitivity to androgens, understanding AR regulation is of fundamental and potentially therapeutic significance. In most target tissues and AR-containing cell lines, AR mRNA is down-regulated in response to androgens. We have reconstituted this androgen-mediated down-regulation of AR mRNA in COS 1 cells transfected with a human AR cDNA under the control of the cytomegalovirus (CMV) promoter. The sequences mediating receptor mRNA down-regulation are represented within the AR cDNA and not within the CMV promoter. Androgenic down-regulation of AR cDNA expression was time- and dose-dependent, resembling native AR mRNA down-regulation. In addition, androgenic regulation of the receptor cDNA was not dependent on protein synthesis suggesting that AR and/or another pre-existing protein(s) is involved in this process. In COS 1 cells co-transfected with androgen and glucocorticoid receptor cDNAs, dexamethasone mimicked the action of androgen in down-regulating AR mRNA. This response depended on glucocorticoid receptors. Androgen had little effect on steady-state levels of AR protein consistent with reports that androgen down-regulates AR mRNA but increases AR protein half-life (Kemppainen et al. (1992) J. Biol. Chem. 267, 968-974; Zhou et al. (1995) Mol. Endocrinol. 9, 208-218). However, glucocorticoids decreased AR protein levels in cells that co-expressed androgen and glucocorticoid receptors. These results indicate that sequences represented in the AR cDNA mediate AR mRNA down-regulation by both androgens and glucocorticoids. Inhibition of AR mRNA and protein by glucocorticoids suggests that these steroids may modulate androgen action in tissues, such as mammary gland and prostate, which express both androgen and glucocorticoid receptors.

Collaboration


Dive into the Kerry L. Burnstein's collaboration.

Top Co-Authors

Avatar

John A. Cidlowski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leah S. Lyons

Nova Southeastern University

View shared research outputs
Top Co-Authors

Avatar

Christine M. Jewell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge