Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerry O’Donnell is active.

Publication


Featured researches published by Kerry O’Donnell.


Mycoscience | 2000

A Multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species

Kerry O’Donnell; Helgard I. Nirenberg; Takayuki Aoki; Elizabeth Cigelnik

Phylogenetic relationships within theGibberella fujikuroi species complex were extended to newly discovered strains using nucleotide characters obtained by sequencing polymerase chain reaction (PCR) amplified DNA from 4 loci used in a previous study [nuclear large subunit 28S rDNA, nuclear ribosomal internal transcribed spacer (ITS) region, mitochondriaal small subunit (mtSSU) ribosomal DNA, and β-tubulin] together with two newly sampled protein-encoding nuclear genes, translation elongation factor EF-1α and calmodulin. Sequences from the ribosomal ITS region were analyzed separately and found to contain of two highly divergent, nonorthologous ITS2 types. Phylogenetic analysis of the individual and combined datasets identified 10 new phylogenetically distinct species distributed among the following three areas: 2 within Asia and 4 within both Africa and South America. Hypotheses of the monophyly ofFusarium subglutinans and its two formae speciales, f. sp.pini and f. sp.ananas, were strongly rejected by a likelihood analysis. Maximum parsimony results further indicate that the protein-encoding nuclear genes provide considerably more phylogenetic signal that the ribosomal genes sequenced. Relative apparent synapomorphy analysis was used to detect long-branch attraction taxa and to obtain a statistical measure of phylogenetic signal in the individual and combined datasets.


Fungal Genetics and Biology | 2008

Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia

Kerry O’Donnell; Todd J. Ward; Dereje Aberra; H. Corby Kistler; Takayuki Aoki; Nathane Orwig; Makoto Kimura; Åsmund Bjørnstad; Sonja S. Klemsdal

A survey of Fusarium head blight (FHB)-contaminated wheat in Ethiopia recovered 31 isolates resembling members of the Fusarium graminearum species complex. Results of a multilocus genotyping (MLGT) assay for FHB species and trichothecene chemotype determination suggested that 22 of these isolates might represent a new species within the Fg complex. Phylogenetic analyses of multilocus DNA sequence data resolved the 22 Ethiopian isolates as a novel, phylogenetically distinct species. The new species also appears to be novel in that MLGT probe data and sequence analysis of both ends of the TRI-cluster identified 15ADON and NIV recombination blocks, documenting inter-chemotype recombination involving the chemotype-determining genes near the ends of the TRI-cluster. Results of pathogenicity experiments and analyses of trichothecene mycotoxins demonstrated that this novel Fg complex species could induce FHB on wheat and elaborate 15ADON in planta. Herein the FHB pathogen from Ethiopia is formally described as a novel species.


FEBS Letters | 2003

The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes

Makoto Kimura; Takeshi Tokai; Kerry O’Donnell; Todd J. Ward; Makoto Fujimura; Hiroshi Hamamoto; Takehiko Shibata; Isamu Yamaguchi

We report for the first time the complete structure and sequence of the trichothecene biosynthesis gene cluster (i.e. Tri5‐cluster) from Fusarium graminearum F15, a strain that produces 3‐acetyldeoxynivalenol (3‐ADON). A putative tyrosinase and polysaccharide deacetylase gene flank the Tri5‐cluster: the number of pathway genes between them is less than half the total number of steps necessary for 3‐ADON biosynthesis. In comparison with partial Tri5‐cluster sequences of strains with 15‐acetyldeoxynivalenol and 4‐acetylnivalenol chemotypes, the Tri5‐cluster from strain F15 contains three genes that are apparently unnecessary for the biosynthesis of 3‐ADON (i.e. Tri8 and Tri3, which are expressed, and pseudo‐Tri13, which is not expressed). In addition, the Tri7 gene was missing from the cluster. Recombinant TRI3 protein showed limited trichothecene C‐15 acetylase activity. In contrast, recombinant TRI8 protein displayed no C‐3 deacetylase activity, suggesting that the loss or alteration of function contribute directly to the chemotype difference.


Fungal Genetics and Biology | 2011

Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance

Brice A. J. Sarver; Todd J. Ward; Liane R. Gale; Karen Broz; H. Corby Kistler; Takayuki Aoki; P. Nicholson; Jon Carter; Kerry O’Donnell

This study was conducted to assess evolutionary relationships, species diversity and trichothecene toxin potential of five Fusarium graminearum complex (FGSC) isolates identified as genetically novel during prior Fusarium head blight (FHB) surveys in Nepal and Louisiana. Results of a multilocus genotyping (MLGT) assay for B-trichothecene species determination indicated these isolates might represent novel species within the FGSC. GCPSR-based phylogenetic analyses of a 12-gene dataset, comprising portions of seven loci totaling 13.1 kb of aligned DNA sequence data, provided strong support for the genealogical exclusivity of the Nepalese and Louisianan isolates. Accordingly, both species are formally recognized herein as novel FGSC species. Fusarium nepalense was resolved as the sister lineage of Fusarium ussurianum+Fusarium asiaticum within an Asian subclade of the FGSC. Fusarium louisianense was strongly supported as a reciprocally monophyletic sister of Fusarium gerlachii+F. graminearum, suggesting that this subclade might be endemic to North America. Multilocus Bayesian species tree analyses augment these results and provide evidence for a distinct lineage within F. graminearum predominately from the Gulf Coast of Louisiana. As predicted by the MLGT assay, mycotoxin analyses demonstrated that F. nepalense and F. louisianense could produce 15ADON and nivalenol, respectively, in planta. In addition, both species were only able to induce mild FHB symptoms on wheat in pathogenicity experiments.


Fungal Genetics and Biology | 2011

Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference

Anne-Laure Boutigny; Todd J. Ward; Gert Van Coller; Bradley C. Flett; Sandra C. Lamprecht; Kerry O’Donnell; Altus Viljoen

Species identity and trichothecene toxin potential of 560 members of the Fusarium graminearum species complex (FGSC) collected from diseased wheat, barley and maize in South Africa was determined using a microsphere-based multilocus genotyping assay. Although three trichothecene types (3-ADON, 15-ADON and NIV) were represented among these isolates, strains with the 15-ADON type predominated on all three hosts. A significant difference, however, was identified in the composition of FGSC pathogens associated with Gibberella ear rot (GER) of maize as compared to Fusarium head blight (FHB) of wheat or barley (P<0.001). F. graminearum accounted for more than 85% of the FGSC isolates associated with FHB of wheat and barley (N=425), and was also the dominant species among isolates from maize roots (N=35). However, with the exception of a single isolate identified as an interspecific hybrid between Fusariumboothii and F. graminearum, GER of maize (N=100) was exclusively associated with F. boothii. The predominance of F. graminearum among FHB isolates, and the near exclusivity of F. boothii among GER isolates, was observed across all cultivars, collection dates, and provinces sampled. Because these results suggest a difference in host preference among species of the FGSC, we hypothesize that F. graminearum may be less well adapted to infect maize ears than other members of the FGSC.


Fungal Genetics and Biology | 2013

An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts

Matthew T. Kasson; Kerry O’Donnell; Alejandro P. Rooney; Stacy Sink; Randy C. Ploetz; Jill N. Ploetz; Joshua L. Konkol; Daniel Carrillo; Stanley Freeman; Zvi Mendel; Jason A. Smith; Adam Black; Jiri Hulcr; Craig Bateman; Kristyna Stefkova; Paul R. Campbell; Andrew D. W. Geering; E. K. Dann; Akif Eskalen; Keerthi Mohotti; Dylan P. G. Short; Takayuki Aoki; Kristi Fenstermacher; Donald D. Davis; David M. Geiser

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.


Fungal Genetics and Biology | 2011

Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic.

Kerry O’Donnell; Alejandro P. Rooney; Gary L. Mills; Michael Kuo; Nancy S. Weber; Stephen A. Rehner

True morels (Morchella, Ascomycota) are arguably the most highly-prized of the estimated 1.5 million fungi that inhabit our planet. Field guides treat these epicurean macrofungi as belonging to a few species with cosmopolitan distributions, but this hypothesis has not been tested. Prompted by the results of a growing number of molecular studies, which have shown many microbes exhibit strong biogeographic structure and cryptic speciation, we constructed a 4-gene dataset for 177 members of the Morchellaceae to elucidate their origin, evolutionary diversification and historical biogeography. Diversification time estimates place the origin of the Morchellaceae in the middle Triassic 243.63 (95% highest posterior density [HPD] interval: 169.35-319.89) million years ago (Mya) and the divergence of Morchella from its closest relatives in the early Cretaceous 129.61 (95% HPD interval: 90.26-173.16) Mya, both within western North America. Phylogenetic analyses identified three lineages within Morchella: a basal monotypic lineage represented by Morchella rufobrunnea, and two sister clades comprising the black morels (Elata Clade, 26 species) and yellow morels (Esculenta Clade, 16 species). Morchella possesses a Laurasian distribution with 37/41 species restricted to the Holarctic. All 33 Holarctic species represented by multiple collections exhibited continental endemism. Moreover, 16/18 North American and 13/15 Eurasian species appeared to exhibit provincialism. Although morel fruit bodies produce thousands of explosively discharged spores that are well suited to aerial dispersal, our results suggest that they are poorly adapted at invading novel niches. Morels also appear to have retained the ancestral fruit body plan, which has remained remarkably static since the Cretaceous.


Phytoparasitica | 2012

An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry

Zvi Mendel; A. Protasov; M. Sharon; A. Zveibil; S. Ben Yehuda; Kerry O’Donnell; R. Rabaglia; M. Wysoki; S. Freeman

The ambrosia beetle, Euwallacea fornicatus Eichhoff, was first recorded in Israel in 2009. The symbiotic fungus Fusarium sp., carried in mycacangia located in the anterior region of the female head, is responsible for the typical wilt symptoms inflicted on avocado (Persea americana Miller) trees. The beetle–fungus complex has become a serious threat to the future of the avocado industry in Israel.


Fungal Genetics and Biology | 2015

Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism.

Kerry O’Donnell; Stacy Sink; Ran Libeskind-Hadas; Jiri Hulcr; Matthew T. Kasson; Randy C. Ploetz; Joshua L. Konkol; Jill N. Ploetz; Daniel Carrillo; Alina Campbell; Rita E. Duncan; Pradeepa N.H. Liyanage; Akif Eskalen; Francis Na; David M. Geiser; Craig Bateman; Stanley Freeman; Zvi Mendel; Michal Sharon; Takayuki Aoki; Allard A. Cossé; Alejandro P. Rooney

The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami-Dade County, Florida shared an identical cytochrome oxidase subunit 1 (CO1) allele with Euwallacea validus, suggesting introgressive hybridization between these species and/or pseudogenous nature of this marker. Results of the present study highlight the importance of understanding the potential for and frequency of host-switching between Euwallacea and members of the AFC, and that these shifts may bring together more aggressive and virulent combinations of these invasive mutualists.


Mycologia | 2013

Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California

Stanley Freeman; Michal Sharon; M. Maymon; Z. Mendel; A. Protasov; Takayuki Aoki; Akif Eskalen; Kerry O’Donnell

The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al.

Collaboration


Dive into the Kerry O’Donnell's collaboration.

Top Co-Authors

Avatar

David M. Geiser

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Todd J. Ward

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Alejandro P. Rooney

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Robert H. Proctor

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Akif Eskalen

University of California

View shared research outputs
Top Co-Authors

Avatar

Martha M. Vaughan

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan P. McCormick

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Amy Kelly

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge