Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerrylyn Johnston is active.

Publication


Featured researches published by Kerrylyn Johnston.


Science of The Total Environment | 2010

Priority water research questions as determined by UK practitioners and policy makers

Lee E. Brown; Gordon Mitchell; Joseph Holden; Andrew M. Folkard; N. Wright; Nesha Beharry-Borg; Gerard T. Berry; B. Brierley; Pippa J. Chapman; S.J. Clarke; L. Cotton; M. Dobson; E. Dollar; M. Fletcher; J. Foster; A. Hanlon; S. Hildon; P. Hiley; P. Hillis; J. Hoseason; Kerrylyn Johnston; Paul Kay; Adrian McDonald; A. Parrott; A. Powell; Rebecca Slack; A. Sleigh; C. Spray; K. Tapley; R. Underhill

Several recent studies have emphasised the need for a more integrated process in which researchers, policy makers and practitioners interact to identify research priorities. This paper discusses such a process with respect to the UK water sector, detailing how questions were developed through inter-disciplinary collaboration using online questionnaires and a stakeholder workshop. The paper details the 94 key questions arising, and provides commentary on their scale and scope. Prioritization voting divided the nine research themes into three categories: (1) extreme events (primarily flooding), valuing freshwater services, and water supply, treatment and distribution [each >150/1109 votes]; (2) freshwater pollution and integrated catchment management [100-150 votes] and; (3) freshwater biodiversity, water industry governance, understanding and managing demand and communicating water research [50-100 votes]. The biggest demand was for research to improve understanding of intervention impacts in the water environment, while a need for improved understanding of basic processes was also clearly expressed, particularly with respect to impacts of pollution and aquatic ecosystems. Questions that addressed aspects of appraisal, particularly incorporation of ecological service values into decision making, were also strongly represented. The findings revealed that sustainability has entered the lexicon of the UK water sector, but much remains to be done to embed the concept operationally, with key sustainability issues such as resilience and interaction with related key sectors, such as energy and agriculture, relatively poorly addressed. However, the exercise also revealed that a necessary condition for sustainable development, effective communication between scientists, practitioners and policy makers, already appears to be relatively well established in the UK water sector.


Freshwater Science | 2015

Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems

Lee E. Brown; Joseph Holden; Sheila M. Palmer; Kerrylyn Johnston; Sorain J. Ramchunder; Richard Grayson

Peatlands are found around the world and cover ∼3.4% of the Earth’s surface. In the UK, peatlands cover 17.2% or ∼1.58 Mha of the land surface and occur mainly in upland areas covering the headwaters of most major British rivers. However, large areas are now subject to prescribed vegetation burning despite policy guidance that recommends a strong presumption against burning on deep blanket peat. Wildfires occur sporadically but are forecast to increase in frequency in the future. This paper provides a synthesis of current knowledge about how UK peatland-dominated river catchments respond to fires caused by prescribed vegetation burning and uncontrolled wildfire. We provide insight into the effects of fire on the hydrology, biogeochemistry, and biota of peatland river ecosystems, and the peatland-soil-driven controls on these effects at the catchment scale. Burning increases the depth to water table and water-table variability, although some small-scale studies indicate shallower water table in some places. More work is needed on fire effects on peatland river flow, but recent results suggest a complex response with smaller flow peaks for burned systems associated with most rainfall events, but enhanced peaks compared to unburned systems for the top quintile of rainfall events with the largest total rain. Evidence from biogeochemical studies suggests that fire leads to increased dissolved organic C concentrations in rivers. River biota responses primarily include significant reductions in the density of grazing mayflies but increases among detritivores including Chironomidae and Baetis mayflies. We provide a conceptual synthesis that links the main responses of terrestrial and aquatic systems to fire, and we summarize some major research gaps that should be prioritized to inform future policy around peatland management.


Journal of Environmental Management | 2015

Vegetation management with fire modifies peatland soil thermal regime

Lee E. Brown; Sheila M. Palmer; Kerrylyn Johnston; Joseph Holden

Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands.


PLOS ONE | 2013

River Ecosystem Response to Prescribed Vegetation Burning on Blanket peatland

Lee E. Brown; Kerrylyn Johnston; Sheila M. Palmer; Katie L. Aspray; Joseph Holden

Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson’s diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.


Water Resources Research | 2015

Impact of prescribed burning on blanket peat hydrology

Joseph Holden; Sheila M. Palmer; Kerrylyn Johnston; Catherine Louise Wearing; Brian Irvine; Lee E. Brown

Fire is known to impact soil properties and hydrological flow paths. However, the impact of prescribed vegetation burning on blanket peatland hydrology is poorly understood. We studied 10 blanket peat headwater catchments. Five were subject to prescribed burning, while five were unburnt controls. Within the burnt catchments, we studied plots where the last burn occurred ∼2 (B2), 4 (B4), 7 (B7), or greater than 10 years (B10+) prior to the start of measurements. These were compared with plots at similar topographic wetness index locations in the control catchments. Plots subject to prescribed vegetation burning had significantly deeper water tables (difference in means = 5.3 cm) and greater water table variability than unburnt plots. Water table depths were significantly different between burn age classes (B2 > B4 > B7 > B10+) while B10+ water tables were not significantly different to the unburnt controls. Overland flow was less common on burnt peat than on unburnt peat, recorded in 9% and 17% of all runoff trap visits, respectively. Storm lag times and hydrograph recession limb periods were significantly greater (by ∼1 and 13 h on average, respectively) in the burnt catchments overall, but for the largest 20% of storms sampled, there was no significant difference in storm lag times between burnt and unburnt catchments. For the largest 20% of storms, the hydrograph intensity of burnt catchments was significantly greater than those of unburnt catchments (means of 4.2 × 10−5 and 3.4 × 10−5 s−1, respectively), thereby indicating a nonlinear streamflow response to prescribed burning. Together, these results from plots to whole river catchments indicate that prescribed vegetation burning has important effects on blanket peatland hydrology at a range of spatial scales.


PLOS ONE | 2014

Constraints upon the response of fish and crayfish to environmental flow releases in a regulated headwater stream network

Edwin T. Chester; Ty G. Matthews; Travis Howson; Kerrylyn Johnston; Jonathon K. Mackie; Scott R. Strachan; Belinda J. Robson

In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer–term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006–2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human–made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams.


Marine and Freshwater Research | 2005

Habitat use by the hymenosomatid crab Amarinus lacustris (Chilton) in two south-eastern Australian rivers

Kerrylyn Johnston; Belinda J. Robson

The hymenosomatid crab Amarinus lacustris is abundant in some south-eastern Australian rivers; however, little is known of its ecology. Patterns of habitat use by crabs in rivers may be affected by seasonal changes in river discharge. This study investigates population characteristics, timing of reproduction and patterns of habitat use by A. lacustris in five riffle and pool habitats from each of the Hopkins and Merri Rivers in south-west Victoria, Australia, sampled over a twelve-month period. Distribution of Amarinus lacustris was similar between the two rivers, but log-linear modelling showed that there was a strong association between crab sex, habitat occupied and time of year because female A. lacustris showed a shift from riffle to pool habitats during March and April, coinciding with the non-gravid period of the year. Male crabs also showed a change in relative occurrence, occurring most often in riffles during winter–spring (July–November) but being equally common in both habitats in summer–autumn (January–May). These patterns are probably the result of the reproductive cycle of A. lacustris, which appears to show both ontogenetic and sex-related changes in habitat use during its life cycle, taking advantage of seasonal fluctuations in flow regime that may assist egg/larval development and dispersal.


Marine and Freshwater Research | 2015

Experimental effects of ash deposition on macroinvertebrate assemblages in peatland streams

Kerrylyn Johnston; Belinda J. Robson

Rotational burn management has been practiced for >150 years in UK peatlands; however, little information exists on its effects on streams. An experiment investigated effects of ash input on four UK headwater streams by depositing ash onto trays filled with natural stream substrata. Before the experiment, streambed samples (SS) were taken to describe ambient macroinvertebrate assemblages. Macroinvertebrate response after 21 days was compared among SS, low (50g), high (100g) and top-up (50g + 50g dosed twice) ash-addition treatments and control trays (0g ash addition). Additions increased tray ash-free dry mass (AFDM), and by the end of the experiment, some trays retained more ash than did others (F12,72=5.15, P<0.001). Macroinvertebrate assemblages differed among streams (r=0.84, P<0.001) and treatments (r=0.23, P<0.001). SS contained fewer shredders than did other treatments (range: r=0.35–0.52, P=0.005). A significant relationship was found between assemblages and environmental conditions (Spearmans rho: 0.203, P=0.001). Stream depth and AFDM showed strongest correlations with assemblages. Ash deposition affects macroinvertebrate assemblages when deposited onto streambeds. However, the high among-stream variation in assemblage composition typical of UK headwaters is a stronger source of variation, suggesting that the effect of deposition is reasonably small in these streams.


Freshwater Biology | 2009

Habitat use by five sympatric Australian freshwater crayfish species (Parastacidae).

Kerrylyn Johnston; Belinda J. Robson


Invertebrate Biology | 2009

Commensalism used by freshwater crayfish species to survive drying in seasonal habitats

Kerrylyn Johnston; Belinda J. Robson

Collaboration


Dive into the Kerrylyn Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Austin

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge