Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kersten Peldschus is active.

Publication


Featured researches published by Kersten Peldschus.


Nature Medicine | 2011

Brown adipose tissue activity controls triglyceride clearance

Alexander Bartelt; Oliver Bruns; Rudolph Reimer; Heinz Hohenberg; Harald Ittrich; Kersten Peldschus; Michael G. Kaul; Ulrich I. Tromsdorf; Horst Weller; Christian Waurisch; Alexander Eychmüller; Philip L.S.M. Gordts; Franz Rinninger; Karoline Bruegelmann; Barbara Freund; Peter Nielsen; Martin Merkel; Joerg Heeren

Brown adipose tissue (BAT) burns fatty acids for heat production to defend the body against cold and has recently been shown to be present in humans. Triglyceride-rich lipoproteins (TRLs) transport lipids in the bloodstream, where the fatty acid moieties are liberated by the action of lipoprotein lipase (LPL). Peripheral organs such as muscle and adipose tissue take up the fatty acids, whereas the remaining cholesterol-rich remnant particles are cleared by the liver. Elevated plasma triglyceride concentrations and prolonged circulation of cholesterol-rich remnants, especially in diabetic dyslipidemia, are risk factors for cardiovascular disease. However, the precise biological role of BAT for TRL clearance remains unclear. Here we show that increased BAT activity induced by short-term cold exposure controls TRL metabolism in mice. Cold exposure drastically accelerated plasma clearance of triglycerides as a result of increased uptake into BAT, a process crucially dependent on local LPL activity and transmembrane receptor CD36. In pathophysiological settings, cold exposure corrected hyperlipidemia and improved deleterious effects of insulin resistance. In conclusion, BAT activity controls vascular lipoprotein homeostasis by inducing a metabolic program that boosts TRL turnover and channels lipids into BAT. Activation of BAT might be a therapeutic approach to reduce elevated triglyceride concentrations and combat obesity in humans.


Nature Nanotechnology | 2009

Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

Oliver T. Bruns; Harald Ittrich; Kersten Peldschus; Michael G. Kaul; Ulrich I. Tromsdorf; Joachim Lauterwasser; Marija S. Nikolic; Birgit Mollwitz; Martin Merkel; Nadja C. Bigall; Sameer Sapra; Rudolph Reimer; Heinz Hohenberg; Horst Weller; Alexander Eychmüller; Gerhard Adam; Ulrike Beisiegel; Joerg Heeren

Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins--micelles that transport lipids and other hydrophobic substances in the blood--and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.


Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren | 2013

Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy.

Harald Ittrich; Kersten Peldschus; N Raabe; Michael G. Kaul; Gerhard Adam

Superparamagnetic iron oxide nanoparticles (SPIO) can be used to image physiological processes and anatomical, cellular and molecular changes in diseases. The clinical applications range from the imaging of tumors and metastases in the liver, spleen and bone marrow, the imaging of lymph nodes and the CNS, MRA and perfusion imaging to atherosclerotic plaque and thrombosis imaging. New experimental approaches in molecular imaging describe undirected SPIO trapping (passive targeting) in inflammation, tumors and associated macrophages as well as the directed accumulation of SPIO ligands (active targeting) in tumor endothelia and tumor cells, areas of apoptosis, infarction, inflammation and degeneration in cardiovascular and neurological diseases, in atherosclerotic plaques or thrombi. The labeling of stem or immune cells allows the visualization of cell therapies or transplant rejections. The coupling of SPIO to ligands, radio- and/or chemotherapeutics, embedding in carrier systems or activatable smart sensor probes and their externally controlled focusing (physical targeting) enable molecular tumor therapies or the imaging of metabolic and enzymatic processes. Monodisperse SPIO with defined physicochemical and pharmacodynamic properties may improve SPIO-based MRI in the future and as targeted probes in diagnostic magnetic resonance (DMR) using chip-based µNMR may significantly expand the spectrum of in vitro analysis methods for biomarker, pathogens and tumor cells. Magnetic particle imaging (MPI) as a new imaging modality offers new applications for SPIO in cardiovascular, oncological, cellular and molecular diagnostics and therapy.


ACS Nano | 2012

Tailor-Made Quantum Dot and Iron Oxide Based Contrast Agents for in Vitro and in Vivo Tumor Imaging

Elmar Pöselt; Christian Schmidtke; Steffen Fischer; Kersten Peldschus; Johannes Salamon; Hauke Kloust; Huong Tran; Andrea Pietsch; Markus Heine; Gerhard Adam; Udo Schumacher; Christoph Wagener; Stephan Förster; Horst Weller

The biofunctionalization of CdSe/CdS/ZnS quantum dots and Fe(3)O(4) nanocrystals using a novel ligand system based on polyisoprene-block-poly(ethylene oxide) ligands is described. The synthesis includes a partial ligand exchange of the hydrophobic nanocrystals with amino-functionalized polyisoprene ligands, followed by seeded micelle formation of the diblock-copolymers in water. The resulting water-soluble quantum dots showed fluorescence quantum efficiencies in the 40 to 50% range and extraordinary fluorescence stability in the biological environment after cross-linking of the polyisoprene moiety of the ligand shell. No toxicity was detected by water-soluble tetrazolium (WST8) and lactate dehydrogenase (LDH) assays, even at very high nanoparticle concentrations, and almost no nonspecific cell adhesion was detected. The ligand shell was further coupled to the antigen-related cell adhesion molecule (CEACAM) specific monoclonal antibody T84.1. The so-conjugated Fe(3)O(4) nanocrystals allowed in vitro and in vivo tumor targeting by magnetic resonance imaging.


The Journal of Nuclear Medicine | 2008

Gene Expression Patterns and Tumor Uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an Orthotopic Mouse Xenotransplantation Model of Pancreatic Cancer

Corinna von Forstner; Jan-Hendrik Egberts; Ole Ammerpohl; Dagmara Niedzielska; Ralph Buchert; Pál Mikecz; Udo Schumacher; Kersten Peldschus; Gerhard Adam; Christian Pilarsky; Robert Grützmann; Holger Kalthoff; Eberhard Henze; Winfried Brenner

Our aim was to use PET/MRI to evaluate and compare the uptake of 18F-FDG, 3-deoxy-3-18F-fluorothymidine (18F-FLT), and 18F-fluorethylcholine (18F-FEC) in human pancreatic tumor cell lines after xenotransplantation into SCID mice and to correlate tumor uptake with gene expression of membrane transporters and rate-limiting enzymes for tracer uptake and tracer retention. Methods: Four weeks after orthotopic inoculation of human pancreatic carcinoma cells (PancTuI, Colo357, and BxPC3) into SCID mice, combined imaging was performed with a small-animal PET scanner and a 3-T MRI scanner using a dedicated mouse coil. Tumor-to-liver uptake ratios (TLRs) of the tracers were compared with gene expression profiles of the tumor cell lines and both normal pancreatic tissue and pancreatic tumor tissue based on gene microarray analysis and quantitative polymerase chain reaction. Results: 18F-FLT showed the highest tumor uptake, with a mean TLR of 2.3, allowing correct visualization of all 12 pancreatic tumors. 18F-FDG detected only 4 of 8 tumors and had low uptake in tumors, with a mean TLR of 1.1 in visible tumors. 18F-FEC did not show any tumor uptake. Gene array analysis revealed that both hexokinase 1 as the rate-limiting enzyme for 18F-FDG trapping and pancreas-specific glucose transporter 2 were significantly downregulated whereas thymidine kinase 1, responsible for 18F-FLT trapping, was significantly upregulated in the tumor cell lines, compared with normal pancreatic duct cells and pancreatic tumor tissue. Relevant genes involved in the uptake of 18F-FEC were predominantly unaffected or downregulated in the tumor cell lines. Conclusion: In comparison to 18F-FDG and 18F-FEC, 18F-FLT was the PET tracer with the highest and most consistent uptake in various human pancreatic tumor cell lines in SCID mice. The imaging results could be explained by gene expression patterns of membrane transporters and enzymes for tracer uptake and retention as measured by gene array analysis and quantitative polymerase chain reaction in the respective cell lines. Thus, standard molecular techniques provided the basis to help explain model-specific tracer uptake patterns in xenotransplanted human tumor cell lines in mice as observed by PET.


Bone | 2014

68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT

Stefan Breer; Thomas Brunkhorst; F. Timo Beil; Kersten Peldschus; Max Heiland; Susanne Klutmann; Florian Barvencik; Jozef Zustin; Klaus-Friedrich Gratz; Michael Amling

Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome characterized by renal phosphate wasting, hypophosphatemia and low calcitriol levels as well as clinical symptoms like diffuse bone and muscle pain, fatigue fractures or increased fracture risk. Conventional imaging methods, however, often fail to detect the small tumors. Lately, tumor localization clearly improved by somatostatin-receptor (SSTR) imaging, such as octreotide scintigraphy or octreotide SPECT/CT. However, recent studies revealed that still a large number of tumors remained undetected by octreotide imaging. Hence, studies focused on different SSTR imaging methods such as 68Ga DOTA-NOC, 68Ga DOTA-TOC and 68Ga DOTA-TATE PET/CT with promising first results. Studies comparing different SSTR imaging methods for tumor localization in TIO are rare and thus little is known about diagnostic alternatives once a particular method failed to detect a tumor in patients with TIO. Here, we report the data of 5 consecutive patients suffering from TIO, who underwent both 111Indium-octreotide scintigraphy (111In-OCT) SPECT/CT as well as 68Ga DOTA-TATE PET/CT for tumor detection. While 111In-OCT SPECT/CT allowed tumor detection in only 1 of 5 patients, 68Ga DOTA-TATE PET/CT was able to localize the tumor in all patients. Afterwards, anatomical imaging of the region of interest was performed with CT and MRI. Thus, successful surgical resection of the tumor was achieved in all patients. Serum phosphate levels returned to normal and all patients reported relief of symptoms within weeks. Moreover, an iliac crest biopsy was obtained from every patient and revealed marked osteomalacia in all cases. Follow-up DXA revealed an increase in BMD of up to 34.5% 1-year postoperative, indicating remineralization. No recurrence was observed. In conclusion our data indicates that 68Ga DOTA-TATE PET/CT is an effective and promising diagnostic tool in the diagnosis of TIO, even in patients in whom 111In-OCT prior failed to detect a tumor.


Molecular Cancer Therapeutics | 2010

Effective Therapeutic Targeting of the Overexpressed HER-2 Receptor in a Highly Metastatic Orthotopic Model of Esophageal Carcinoma

Stephanie J. Gros; Nina Kurschat; Thorsten Dohrmann; Uta Reichelt; Ana-Maria Dancau; Kersten Peldschus; Gerhard Adam; Robert M. Hoffman; Jakob R. Izbicki; Jussuf T. Kaifi

This study aimed to determine the targeted efficacy of trastuzumab (Herceptin) on human epidermal growth factor receptor 2 (HER-2)-overexpressing metastatic esophageal cancer in an orthotopic mouse model. HER-2 overexpression and amplification of human esophageal primary and metastatic tumors were shown with HER-2–fluorescence in situ hybridization analysis and HER-2 immunostaining. Following orthotopic implantation with the HER-2–overexpressing OE19 human esophageal cancer cell line, mice were treated with trastuzumab. Sequential magnetic resonance imaging was used to monitor primary tumor and metastasis during treatment. After six weeks, a significant inhibition of primary tumor development was imaged in trastuzumab-treated animals in comparison with the control group. Trastuzumab treatment also led to a reduction of lymphatic metastasis. Thus, HER-2 targeted therapy with trastuzumab resulted in a significant primary tumor growth reduction as well as a decrease of lymph node metastases in the orthotopic model of metastatic esophageal carcinoma. The results of the present study suggest the clinical use of trastuzumab for HER-2–overexpressing esophageal cancer, which is a significant fraction of the patient population. Treatment of this highly treatment-resistant disease with trastuzumab in the adjuvant setting to prevent lymph node metastasis after primary tumor resection is suggested by the data in this report. Mol Cancer Ther; 9(7); 2037–45. ©2010 AACR.


International Journal of Cancer | 2010

Complementary use of fluorescence and magnetic resonance imaging of metastatic esophageal cancer in a novel orthotopic mouse model

Stephanie J. Gros; Thorsten Dohrmann; Kersten Peldschus; Paulus G. Schurr; Jussuf T. Kaifi; Tatyana Kalinina; Uta Reichelt; Oliver Mann; Tim Strate; Gerhard Adam; Robert M. Hoffman; Jakob R. Izbicki

We describe the development of an aggressive orthotopic metastatic model of esophageal cancer, which is visualized in real time with combined magnetic resonance imaging (MRI) and fluorescence imaging. The aim of the study was to describe the development of a novel model of metastatic tumor disease of esophageal carcinoma and use this model to evaluate fluorescence and MRI in early detection of local and metastatic disease. The human esophageal adenocarcinoma cell line PT1590 was stably transfected with green fluorescent protein (GFP). Nude mice were orthotopically implanted with PT1590‐GFP cells. Orthotopic tumor growth as well as metastatic spread was examined by fluorescence imaging and high‐resolution MRI at defined intervals after orthotopic implantation. Highly aggressive novel fluorescent cell lines were isolated from metastatic tissues and put into culture. After implantation of these cells, 100% of the animals developed orthotopic primary tumors. In 83% of animals, metastatic spread to liver, lung and lymph nodes was observed. Primary tumor growth could be visualized with fluorescence imaging and with MRI with high correlation between the 2 methods. Fluorescence imaging allows fast, sensitive, and economical imaging of the primary and metastatic tumor without anesthesia. With MRI, anatomical structures are visualized more precisely and tumors can be more accurately localized to specific organs. This model should prove highly useful to understand esophageal carcinoma and to identify novel therapeutics for this treatment‐resistant disease.


Gut | 2013

Selectin binding is essential for peritoneal carcinomatosis in a xenograft model of human pancreatic adenocarcinoma in pfp−−/rag2−− mice

Florian Gebauer; Daniel Wicklein; Katrin Stübke; Nina Nehmann; Anna Schmidt; Johannes Salamon; Kersten Peldschus; Michael F. Nentwich; Gerhard Adam; Genrich V. Tolstonog; Maximilian Bockhorn; Jakob R. Izbicki; Christoph Wagener; Udo Schumacher

Background and objective E- and P-selectins expressed on the luminal surface of mesodermally derived endothelial cells play a crucial role in the formation of haematogenous metastases in a number of malignancies. As peritoneal mesothelial cells are also derived form the mesoderm, it was hypothesised that selectins are also of importance in peritoneal tumour spread. Methods Immunohistochemistry was used to identify selectin expression on normal human peritoneum and isolated mesothelial cells. E- and P-selectin interactions with human pancreatic adenocarcinoma cells were investigated in dynamic flow assays and flow cytometry; the latter was also used to determine the main selectin ligands on pancreatic adenocarcinoma cell lines PaCa 5061, BxPC-3 and PaCa 5072, and selectin expression on human mesothelial cells. All cell lines were xenografted into the peritoneum of E- and P-selectin-deficient pfp/rag2 mice and selectin wild-type controls. Peritoneal carcinomatosis was quantified using MRI or a scoring system. Results E- and P-selectin were constitutively expressed on human mesothelial and endothelial cells in the peritoneum. PaCa 5061 and BxPC-3 cells interacted with E- and P-selectins in dynamic flow assays and flow cytometry, with CA19-9 (Sialyl Lewis a) being the main E-selectin ligand. For xenografted PaCa 5061 and BxPC-3 cells, peritoneal metastasis was significantly reduced in E- and P-selectin double knockout mice compared with wild-type pfp/rag2 animals. In contrast, PaCa 5072 cells were almost devoid of selectin binding sites and no intraperitoneal tumour growth was observed. Conclusion Interactions of tumour cells with peritoneal selectins play an important role in the peritoneal spread of pancreatic adenocarcinoma.


PLOS ONE | 2011

Investigations on the Usefulness of CEACAMs as Potential Imaging Targets for Molecular Imaging Purposes

Markus Heine; Peter Nollau; Christoph Masslo; Peter Brønnum Nielsen; Barbara Freund; Oliver Bruns; Rudolph Reimer; Heinrich Hohenberg; Kersten Peldschus; Harald Ittrich; Udo Schumacher

Members of the carcinoembryonic antigen cell adhesion molecules (CEACAMs) family are the prototype of tumour markers. Classically they are used as serum markers, however, CEACAMs could serve as targets for molecular imaging as well. In order to test the anti CEACAM monoclonal antibody T84.1 for imaging purposes, CEACAM expression was analysed using this antibody. Twelve human cancer cell lines from different entities were screened for their CEACAM expression using qPCR, Western Blot and FACS analysis. In addition, CEACAM expression was analyzed in primary tumour xenografts of these cells. Nine of 12 tumour cell lines expressed CEACAM mRNA and protein when grown in vitro. Pancreatic and colon cancer cell lines showed the highest expression levels with good correlation of mRNA and protein level. However, when grown in vivo, the CEACAM expression was generally downregulated except for the melanoma cell lines. As the CEACAM expression showed pronounced expression in FemX-1 primary tumours, this model system was used for further experiments. As the accessibility of the antibody after i.v. application is critical for its use in molecular imaging, the binding of the T84.1 monoclonal antibody was assessed after i.v. injection into SCID mice harbouring a FemX-1 primary tumour. When applied i.v., the CEACAM specific T84.1 antibody bound to tumour cells in the vicinity of blood vessels. This binding pattern was particularly pronounced in the periphery of the tumour xenograft, however, some antibody binding was also observed in the central areas of the tumour around blood vessels. Still, a general penetration of the tumour by i.v. application of the anti CEACAM antibody could not be achieved despite homogenous CEACAM expression of all melanoma cells when analysed in tissue sections. This lack of penetration is probably due to the increased interstitial fluid pressure in tumours caused by the absence of functional lymphatic vessels.

Collaboration


Dive into the Kersten Peldschus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge