Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin C. Reuter is active.

Publication


Featured researches published by Kerstin C. Reuter.


Nature | 2016

Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

Lena M. Kranz; Mustafa Diken; Heinrich Haas; Sebastian Kreiter; Carmen Loquai; Kerstin C. Reuter; Martin Meng; Daniel Fritz; Fulvia Vascotto; Hossam Hefesha; Christian Grunwitz; Mathias Vormehr; Yves Hüsemann; Abderraouf Selmi; Andreas Kuhn; Janina Buck; Evelyna Derhovanessian; Richard Rae; Sebastian Attig; Jan Diekmann; Robert A. Jabulowsky; Sandra Heesch; Jessica C. Hassel; Peter Langguth; Stephan Grabbe; Christoph Huber; Özlem Türeci; Ugur Sahin

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.


Journal of Pharmacology and Experimental Therapeutics | 2012

Selective Glucocorticoid Receptor Agonists for the Treatment of Inflammatory Bowel Disease: Studies in Mice with Acute Trinitrobenzene Sulfonic Acid Colitis

Kerstin C. Reuter; Christian Grunwitz; Bettina M. Kaminski; Dieter Steinhilber; Heinfried H. Radeke; Jürgen Stein

Despite being a mainstay of inflammatory bowel disease (IBD) therapy, glucocorticoids (GCs) still carry significant risks with respect to unwanted side effects. Alternative drugs with a more favorable risk/benefit ratio than common GCs are thus highly desirable for the management of IBD. New and supposedly selective glucocorticoid receptor (GR) agonists (SEGRAs), with dissociated properties, have been described as promising candidates for circumventing therapeutic problems while still displaying full beneficial anti-inflammatory potency. Here, we report on compound A [CpdA; (2-((4-acetophenyl)-2-chloro-N-methyl)ethylammonium-chloride)] and N-(4-methyl-1-oxo-1H-2,3-benzoxazine-6-yl)-4-(2,3-dihydrobenzofuran-7-yl)-2-hydroxy-2-(trifluoromethyl)-4-methylpentanamide (ZK216348), two GR agonists for the treatment of experimental colitis. Their therapeutic and anti-inflammatory effects were tested in the acute trinitrobenzene sulfonic acid-mediated colitis model in mice against dexamethasone (Dex). In addition to their influence on immunological pathways, a set of possible side effects, including impact on glucose homeostasis, steroid resistance, and induction of apoptosis, was surveyed. Our results showed that, comparable with Dex, treatment with CpdA and ZK216348 reduced the severity of wasting disease, macroscopic and microscopic damage, and colonic inflammation. However, both SEGRAs exhibited no GC-associated diabetogenic effects, hypothalamic pituitary adrenal axis suppression, or development of glucocorticoid resistance. In addition, CpdA and ZK216348 showed fewer transactivating properties and successfully dampened T helper 1 immune response. Unlike ZK216348, the therapeutic benefit of CpdA was lost at higher doses because of toxic apoptotic effects. In conclusion, both SEGRAs acted as potent anti-inflammatory agents with a significantly improved profile compared with classic GCs. Although CpdA revealed a narrow therapeutic window, both GR agonists might be seen as a starting point for a future IBD treatment option.


PLOS ONE | 2012

Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro

Kerstin C. Reuter; Stefan Loitsch; Axel Dignass; Dieter Steinhilber; Jürgen Stein

Introduction Despite the excellent anti-inflammatory and immunosuppressive action of glucocorticoids (GCs), their use for the treatment of inflammatory bowel disease (IBD) still carries significant risks in terms of frequently occurring severe side effects, such as the impairment of intestinal tissue repair. The recently-introduced selective glucocorticoid receptor (GR) agonists (SEGRAs) offer anti-inflammatory action comparable to that of common GCs, but with a reduced side effect profile. Methods The in vitro effects of the non-steroidal SEGRAs Compound A (CpdA) and ZK216348, were investigated in intestinal epithelial cells and compared to those of Dexamethasone (Dex). GR translocation was shown by immunfluorescence and Western blot analysis. Trans-repressive effects were studied by means of NF-κB/p65 activity and IL-8 levels, trans-activation potency by reporter gene assay. Flow cytometry was used to assess apoptosis of cells exposed to SEGRAs. The effects on IEC-6 and HaCaT cell restitution were determined using an in vitro wound healing model, cell proliferation by BrdU assay. In addition, influences on the TGF-β- or EGF/ERK1/2/MAPK-pathway were evaluated by reporter gene assay, Western blot and qPCR analysis. Results Dex, CpdA and ZK216348 were found to be functional GR agonists. In terms of trans-repression, CpdA and ZK216348 effectively inhibited NF-κB activity and IL-8 secretion, but showed less trans-activation potency. Furthermore, unlike SEGRAs, Dex caused a dose-dependent inhibition of cell restitution with no effect on cell proliferation. These differences in epithelial restitution were TGF-β-independent but Dex inhibited the EGF/ERK1/2/MAPK-pathway important for intestinal epithelial wound healing by induction of MKP-1 and Annexin-1 which was not affected by CpdA or ZK216348. Conclusion Collectively, our results indicate that, while their anti-inflammatory activity is comparable to Dex, SEGRAs show fewer side effects with respect to wound healing. The fact that SEGRAs did not have a similar effect on cell restitution might be due to a different modulation of EGF/ERK1/2 MAPK signalling.


Molecular Nutrition & Food Research | 2010

Isothiocyanate sulforaphane inhibits protooncogenic ornithine decarboxylase activity in colorectal cancer cells via induction of the TGF-β/Smad signaling pathway.

Bettina M. Kaminski; Stefan Loitsch; Meike J. Ochs; Kerstin C. Reuter; Dieter Steinhilber; Jürgen Stein; Sandra Ulrich

SCOPE The objective of this study was to elucidate molecular mechanisms behind the antitumor activities of the isothiocyanate sulforaphane (SFN) in colorectal cancer cells. METHODS AND RESULTS Cell growth was determined by BrdU incorporation and crystal violet staining. Protein levels were examined by Western blot analysis. Ornithine decarboxylase (ODC) activity was assayed radiometrically. Reverse transcriptase-PCR was used for measuring mRNA expression. For reporter gene assays plasmids were transfected into cells via lipofection and luciferase activity was measured luminometrically. Acetyl-histone H3 and H4 chromatin immunoprecipitation (ChIP) assays were performed followed by PCR with TGF-β-receptor II promoter specific primers. We could show that SFN-mediated cell growth inhibition closely correlates with a dose-dependent reduction of protein expression and enzymatic activity of ODC. This effect seems to be due to reduced protein levels and transactivation activity of transcription factor c-myc, a direct regulator of ODC expression, as a consequence of SFN-induced TGF-β/Smad signaling. The coherency of these results was further confirmed by using TGF-β receptor kinase inhibitor SB431542, which largely abolishes inhibitory effects of SFN on both, ODC activity and cell growth. CONCLUSION Since elevated ODC enzyme activity is associated with enhanced tumor development, SFN may be a dietary phytochemical with potential to prevent carcinogenesis.


Molecular Therapy | 2017

Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses

Annette B. Vogel; Laura Lambert; Ekaterina Kinnear; David Busse; Stephanie Erbar; Kerstin C. Reuter; Lena Wicke; Mario Perkovic; Tim Beissert; Heinrich Haas; Stephen T. Reece; Ugur Sahin; John S. Tregoning

New vaccine platforms are needed to address the time gap between pathogen emergence and vaccine licensure. RNA-based vaccines are an attractive candidate for this role: they are safe, are produced cell free, and can be rapidly generated in response to pathogen emergence. Two RNA vaccine platforms are available: synthetic mRNA molecules encoding only the antigen of interest and self-amplifying RNA (sa-RNA). sa-RNA is virally derived and encodes both the antigen of interest and proteins enabling RNA vaccine replication. Both platforms have been shown to induce an immune response, but it is not clear which approach is optimal. In the current studies, we compared synthetic mRNA and sa-RNA expressing influenza virus hemagglutinin. Both platforms were protective, but equivalent levels of protection were achieved using 1.25 μg sa-RNA compared to 80 μg mRNA (64-fold less material). Having determined that sa-RNA was more effective than mRNA, we tested hemagglutinin from three strains of influenza H1N1, H3N2 (X31), and B (Massachusetts) as sa-RNA vaccines, and all protected against challenge infection. When sa-RNA was combined in a trivalent formulation, it protected against sequential H1N1 and H3N2 challenges. From this we conclude that sa-RNA is a promising platform for vaccines against viral diseases.


Human Vaccines & Immunotherapeutics | 2016

CIMT 2015: The right patient for the right therapy - Report on the 13th annual meeting of the Association for Cancer Immunotherapy.

Lena M. Kranz; Matthias Birtel; Christina Krienke; Christian Grunwitz; Jutta Petschenka; Kerstin C. Reuter; Niels van de Roemer; Fulvia Vascotto; Mathias Vormehr; Sebastian Kreiter; Mustafa Diken

The 13th Annual Meeting of the Association for Cancer Immunotherapy (CIMT) brought together more than 800 scientists in Mainz, Germany, from May 11–13, 2015, to present and discuss current research on various fields of cancer immunotherapy. Special focus was set on personalized approaches, and independent of the specific therapeutic strategy, the exploitation of mutated neoantigens predominated all sessions - in line with the motto of this years meeting, “The right patient for the right therapy.”


Cancer immunology research | 2016

Abstract B041: A novel nanoparticular formulated tetravalent RNA cancer vaccine for treatment of patients with malignant melanoma

Robert A. Jabulowsky; Carmen Loquai; Mustafa Diken; Lena M. Kranz; Heinrich Haas; Sebastian Attig; Cedrik M. Britten; Janina Buck; Evelyna Derhovanessian; Jan Diekmann; Isaac Esparza; Daniel Fritz; Yves Huesemann; Veronika Jahndel; Klaus Kuehlcke; Andreas Kuhn; Peter Langguth; Ulrich Luxemburger; Martin Meng; Felicitas Mueller; Kerstin C. Reuter; Doreen Schwarck; Kristina Spiess; Meike Witt; Jessica C. Hassel; Jochen Utikal; Roland Kaufmann; Marc Schrott; Sebastian Kreiter; Oezlem Tuereci

Immunotherapeutic approaches have evolved as promising and valid alternatives to available conventional cancer treatments. Amongst others, vaccination with tumor antigen-encoding RNAs by local administration is currently successfully employed in various clinical trials. To allow for a more efficient targeting of antigen-presenting cells (APCs) we have developed a novel RNA immunotherapeutic for systemic application based on a fixed set of four liposome complexed RNA drug products (RNA(LIP)) each encoding one shared melanoma-associated antigen. Similar to other liposomal drugs, the four injectable RNA(LIP) products constituting the investigational medicinal product will be prepared individually in a straight-forward manner directly prior to use from three components, namely solutions containing RNA drug product, NaCl diluent, and liposome excipient, that are provided as a kit. The novel lipoplex formulation was engineered (i) to protect RNA from degradation by plasma RNases and (ii) to enable directed in vivo targeting of APCs in lymphoid compartments, thus (iii) allowing for intravenous administration of multiple RNA products advancing from local to systemic targeting of APCs. The improved selective delivery of the RNA(LIP) products into APCs has further been shown to lead to an enhanced induction of vaccine-induced T-cell responses. Extensive pharmacological characterization of the RNA(LIP) platform revealed that upon cellular uptake the encoded antigens will be translated into proteins that will be rapidly processed into peptide fragments, which after presentation by MHC class I and II molecules on the surface of APCs induce tumor antigen-specific CD8+ and CD4+ T-cell responses that spread systemically. These vaccine-induced T cells have been shown to specifically recognize and kill antigen-positive tumor cells eliciting potent anti-tumoral activity in vivo. The potent vaccination effects are additionally enhanced by further immunomodulatory effects based on the transient release of pro-inflammatory cytokines such as IFN-α, IP-10, and IL-6 due to binding of the administered RNA drug products to Toll-like receptors (TLRs). The clinical translation of this pioneering therapeutic concept is currently being realized in a multi-center, first-in-human phase I trial in patients with malignant melanoma. Main objectives of the clinical trial are to study safety, tolerability, and immunogenicity of this innovative immunotherapy approach. The novel lipoplex formulation, RNA(LIP) mechanism of action, study design and clinical workflow, as well as recruitment and treatment status of the ongoing clinical trial will be presented. Citation Format: Robert A. Jabulowsky, Carmen Loquai, Mustafa Diken, Lena M. Kranz, Heinrich Haas, Sebastian Attig, Cedrik M. Britten, Janina Buck, Evelyna Derhovanessian, Jan Diekmann, Isaac Esparza, Daniel Fritz, Yves Huesemann, Veronika Jahndel, Klaus Kuehlcke, Andreas N. Kuhn, Peter Langguth, Ulrich Luxemburger, Martin Meng, Felicitas Mueller, Kerstin C. Reuter, Doreen Schwarck, Kristina Spiess, Meike Witt, Jessica C. Hassel, Jochen Utikal, Roland Kaufmann, Marc Schrott, Sebastian Kreiter, Oezlem Tuereci, Christoph Huber, Ugur Sahin. A novel nanoparticular formulated tetravalent RNA cancer vaccine for treatment of patients with malignant melanoma. [abstract]. In: Proceedings of the CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(1 Suppl):Abstract nr B041.


RAN | 2017

Structure-Function Correlation in Novel Nanomedicines for RNA Delivery

Sara S. Nogueira; Jorge Moreno; Heinrich Haas; Kerstin C. Reuter; Stephanie Erbar; Peter Languth

Extended Abstract Messenger RNA (mRNA)-based nanomedicines constitute a new class of pharmaceutical products, with a variety of potential applications, ranging from tumour immunotherapy to protein substitution. For patient administration, mRNA can be formulated in different types of nanoparticle vehicles, in order to protect the mRNA from degradation and facilitate uptake resulting in expression at the target site. BioNTech has brought the first intravenously injectable mRNA nanoparticle product for cancer immunotherapy into clinical trials, which consist of a lipoplex formulation obtainable from cationic liposomes [1, 2]. Lipid nanoparticles (LNPs) are another type of delivery vehicle and have been successfully used in the past, for example, to deliver siRNA to the liver [3]. Recently, LNPs have been also been used as carriers for mRNA, for induction potent CD8 T cell immune response [4], showing that LNPs can be versatile delivery systems for RNA in diverse therapeutic settings. Typically, LNPs are comprised of an ionizable lipid, one or several helper lipids and a polyethylene glycol (PEG). The ionizable lipid, which is positively charged at low pH and neutral at high pH, is selected to allow high RNA encapsulation and efficacy and to facilitate endosomal escape. The activity of the mRNA LNP formulations strongly depends on the type of ionisable lipid, on the lipid composition, the lipid to RNA ratio, and several other molecular and structural parameters. Furthermore, the activity may vary also for different application routes (e.g., intravenous, intramuscular, subcutaneous), or if therapeutic approaches are intended. So far, there is no clear common understanding on the correlation between the molecular parameters of the LNPs and the biological activity. Therefore, in our study we have systematically studied certain molecular and formulation parameters of mRNA loaded LNPs, in order to correlate them with the biological function. In particular we have thoroughly investigated physicochemical characteristics (internal organization, fluidity, size) and the structure of the LNPs (in particular by small angle x-ray scattering) and determined the biological activity in vitro and in vivo. The structural and functional coherencies in the LNPs were compared in those of lipoplexes, and the effects of selected lipids were highlighted. Such understanding of the molecular basis of delivery complexes will help to identify criteria for the development of improved mRNA delivery vehicles for clinical development.


Cancer immunology research | 2016

Abstract A004: Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms

Lena M. Kranz; Mustafa Diken; Heinrich Haas; Sebastian Kreiter; Carmen Loquai; Kerstin C. Reuter; Martin Meng; Daniel Fritz; Fulvia Vascotto; Hossam Hefesha; Christian Grunwitz; Mathias Vormehr; Yves Hüsemann; Abderraouf Selmi; Andreas Kuhn; Janina Buck; Evelyna Derhovanessian; Richard Rae; Sebastian Attig; Jan Diekmann; Robert A. Jabulowsky; Sandra Heesch; Jessica C. Hassel; Peter Langguth; Stephan Grabbe; Christoph Huber; Özlem Türeci; Ugur Sahin

Mechanisms of antiviral host defense are important for survival and evolutionarily optimized for high sensitivity and potency. Intending to harvest the multitude of highly specialized and intertwined pathogen immune defense programs for cancer immunotherapy, we simulated a systemic pathogen intrusion into the blood stream by intravenous injection of lipid-formulated, tumor antigen-encoding mRNA nanoparticles. These RNA-lipoplexes (RNA-LPX) were directed to various lymphoid tissues, including the spleen, lymph nodes and bone marrow, which provide the ideal microenvironment for efficient priming and amplification of T cell responses. Solely the RNA-to-lipid ratio was discovered to determine the biodistribution of RNA-LPX, irrespective of the types of lipids used, and a slightly negative particle net charge was able to specifically transfect lymphoid-resident antigen presenting cells (APCs). Following uptake by CD11c+ DCs, pDCs and macrophages in the marginal zone of the spleen and in other lymphoid organs, predominantly by macropinocytosis, RNA recognition via TLR7 triggered two transient waves of type I IFN production by pDCs (early response) and macrophages (delayed response), which established an inflammatory, lymphocyte-activating milieu reminiscent of that initiated during the early systemic phase of viral infection. These IFNα receptor (IFNAR)-dependent immune mechanisms were required for DCs to mature, migrate into the T cell zones and express RNA-encoded tumor antigens. Presentation on MHC class I and II in the context of upregulated CD40, CD69 and CD86 elicited strong effector and memory CD8 and CD4 T cell immunity against viral, mutant neo-antigens or self-antigens, which was able to reject progressive tumors in therapeutic mouse models of melanoma, colon carcinoma and human papilloma virus (HPV)-associated cancer. In an ongoing phase I dose escalation study, the first cohort of three patients with advanced melanoma received RNA-LPX encoding four shared tumor antigens at doses lower than those used in the mouse studies. All patients showed a dose-dependent IFNα- and IP-10-dominated cytokine response, developed de novo CD4 and CD8 T cell responses or enhanced pre-existing immunity against the encoded self-antigens NY-ESO-I, Tyrosinase and MAGE-A3, and have stable disease to date. These results support the preclinically identified mode of action and strong potency of this approach in the clinical setting. Our study presents a novel class of systemically administered nanoparticulate RNA vaccines acting by body-wide delivery of encoded antigens to APCs and simultaneous initiation of a strong type I IFN-driven immunostimulatory program. Precise DC targeting in lymphoid compartments is accomplished using well-known lipid carriers and only by manipulating the net charge of the nanoparticles. RNA-LPX vaccines appear to mimic infectious non-self and thus mobilize both adaptive and innate immune mechanisms, connecting effective cancer immunotherapy with host pathogen-defense mechanisms. The simple but highly versatile design allows vaccine preparation with any type of RNA-encoded antigen and may thus be regarded as a universally applicable, first-in-class vaccine platform for cancer immunotherapy. Citation Format: Lena M. Kranz, Mustafa Diken, Heinrich Haas, Sebastian Kreiter, Carmen Loquai, Kerstin C. Reuter, Martin Meng, Daniel Fritz, Fulvia Vascotto, Hossam Hefesha, Christian Grunwitz, Mathias Vormehr, Yves Husemann, Abderraouf Selmi, Andreas N. Kuhn, Janina Buck, Evelyna Derhovanessian, Richard Rae, Sebastian Attig, Jan Diekmann, Robert A. Jabulowsky, Sandra Heesch, Jessica Hassel, Peter Langguth, Stephan Grabbe, Christoph Huber, Ozlem Tureci, Ugur Sahin. Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms [abstract]. In: Proceedings of the Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; 2016 Sept 25-28; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(11 Suppl):Abstract nr A004.


Human Vaccines & Immunotherapeutics | 2014

CIMT 2014: Next waves in cancer immunotherapy--report on the 12th annual meeting of the Association for Cancer Immunotherapy: May 6–8 2014, Mainz, Germany.

Mustafa Diken; Sebastian Boegel; Christian Grunwitz; Lena M. Kranz; Kerstin C. Reuter; Niels van de Roemer; Fulvia Vascotto; Mathias Vormehr; Sebastian Kreiter

More than 900 scientists around the world visited the 12th Annual Meeting of the Association for Cancer Immunotherapy (CIMT) in Mainz, Germany from 6–8 May, 2014. Recent advancements in various specific fields of cancer immunotherapy were discussed in Europe`s largest meeting of this kind under the motto “Next Waves in Cancer Immunotherapy,” the highlights of which are summarized in this meeting report.

Collaboration


Dive into the Kerstin C. Reuter's collaboration.

Top Co-Authors

Avatar

Jürgen Stein

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Stefan Loitsch

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Steinhilber

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge