Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Helmstaedt is active.

Publication


Featured researches published by Kerstin Helmstaedt.


Science | 2008

VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism.

Özgür Bayram; Sven Krappmann; Min Ni; Jin Woo Bok; Kerstin Helmstaedt; Oliver Valerius; Susanna A. Braus-Stromeyer; Nak-Jung Kwon; Nancy P. Keller; Jae-Hyuk Yu; Gerhard H. Braus

Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans, light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.


Genetics | 2008

The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa

Sabine Maerz; Carmit Ziv; Nico Vogt; Kerstin Helmstaedt; Nourit Cohen; Rena Gorovits; Oded Yarden; Stephan Seiler

Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation.

Silke Busch; Elke U. Schwier; Krystyna Nahlik; Özgür Bayram; Kerstin Helmstaedt; Oliver W. Draht; Sven Krappmann; Oliver Valerius; William N. Lipscomb; Gerhard H. Braus

Fruit body formation in filamentous fungi is a complex and yet hardly understood process. We show here that protein turnover control is crucial for Aspergillus nidulans development. Deletion of genes encoding COP9 signalosome (CSN) subunits 1, 2, 4, or 5 resulted in identical blocks in fruit body formation. The CSN multiprotein complex controls ubiquitin-dependent protein degradation in eukaryotes. Six CSN subunits interacted in a yeast two-hybrid analysis, and the complete eight-subunit CSN was recruited by a functional tandem affinity purification tag fusion of subunit 5 (CsnE). The tagged CsnE was unable to recruit any CSN subunit in a strain deleted for subunit 1 or subunit 4. Mutations in the JAMM metalloprotease core of CsnE resulted in mutant phenotypes identical to those of csn deletion strains. We propose that a correctly assembled CSN including a functional JAMM links protein turnover to fungal sexual development.


Molecular Microbiology | 2010

The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development.

Krystyna Nahlik; Marc Dumkow; Özgür Bayram; Kerstin Helmstaedt; Silke Busch; Oliver Valerius; Jennifer Gerke; Michael Hoppert; Elke U. Schwier; Lennart Opitz; Mieke Westermann; Stephanie Grond; Kirstin Feussner; Cornelia Goebel; Alexander Kaever; Peter Meinicke; Ivo Feussner; Gerhard H. Braus

The COP9 signalosome complex (CSN) is a crucial regulator of ubiquitin ligases. Defects in CSN result in embryonic impairment and death in higher eukaryotes, whereas the filamentous fungus Aspergillus nidulans survives without CSN, but is unable to complete sexual development. We investigated overall impact of CSN activity on A. nidulans cells by combined transcriptome, proteome and metabolome analysis. Absence of csn5/csnE affects transcription of at least 15% of genes during development, including numerous oxidoreductases. csnE deletion leads to changes in the fungal proteome indicating impaired redox regulation and hypersensitivity to oxidative stress. CSN promotes the formation of asexual spores by regulating developmental hormones produced by PpoA and PpoC dioxygenases. We identify more than 100 metabolites, including orsellinic acid derivatives, accumulating preferentially in the csnE mutant. We also show that CSN is required to activate glucanases and other cell wall recycling enzymes during development. These findings suggest a dual role for CSN during development: it is required early for protection against oxidative stress and hormone regulation and is later essential for control of the secondary metabolism and cell wall rearrangement.


Microbiology and Molecular Biology Reviews | 2001

Allosteric Regulation of Catalytic Activity:Escherichia coli Aspartate Transcarbamoylase versus Yeast Chorismate Mutase

Kerstin Helmstaedt; Sven Krappmann; Gerhard H. Braus

SUMMARY Allosteric regulation of key metabolic enzymes is a fascinating field to study the structure-function relationship of induced conformational changes of proteins. In this review we compare the principles of allosteric transitions of the complex classical model aspartate transcarbamoylase (ATCase) from Escherichia coli, consisting of 12 polypeptides, and the less complicated chorismate mutase derived from bakers yeast, which functions as a homodimer. Chorismate mutase presumably represents the minimal oligomerization state of a cooperative enzyme which still can be either activated or inhibited by different heterotropic effectors. Detailed knowledge of the number of possible quaternary states and a description of molecular triggers for conformational changes of model enzymes such as ATCase and chorismate mutase shed more and more light on allostery as an important regulatory mechanism of any living cell. The comparison of wild-type and engineered mutant enzymes reveals that current textbook models for regulation do not cover the entire picture needed to describe the function of these enzymes in detail.


Journal of Biological Chemistry | 1999

The aroC Gene of Aspergillus nidulans Codes for a Monofunctional, Allosterically Regulated Chorismate Mutase*

Sven Krappmann; Kerstin Helmstaedt; Thomas Gerstberger; Sabine Eckert; Bernd Hoffmann; Michael Hoppert; Georg Schnappauf; Gerhard H. Braus

The cDNA and the chromosomal locus of thearoC gene of Aspergillus nidulans were cloned and is the first representative of a filamentous fungal gene encoding chorismate mutase (EC 5.4.99.5), the enzyme at the first branch point of aromatic amino acid biosynthesis. The aroC gene complements the Saccharomyces cerevisiae aro7Δ as well as the A. nidulans aroC mutation. The gene consists of three exons interrupted by two short intron sequences. The expressed mRNA is 0.96 kilobases in length and aroC expression is not regulated on the transcriptional level under amino acid starvation conditions. aroC encodes a monofunctional polypeptide of 268 amino acids. Purification of this 30-kDa enzyme allowed determination of its kinetic parameters (k cat = 82 s−1, n H = 1.56, [S]0.5 = 2.3 mm), varying pH dependence of catalytic activity in different regulatory states, and an acidic pI value of 4.7. Tryptophan acts as heterotropic activator and tyrosine as negative acting, heterotropic feedback-inhibitor with aK i of 2.8 μm. Immunological data, homology modeling, as well as electron microscopy studies, indicate that this chorismate mutase has a dimeric structure like the S. cerevisiae enzyme. Site-directed mutagenesis of a crucial residue in loop220s (Asp233) revealed differences concerning the intramolecular signal transduction for allosteric regulation of enzymatic activity.


Molecular Biology of the Cell | 2011

Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site

Kerstin Helmstaedt; Elke U. Schwier; Martin Christmann; Krystyna Nahlik; Mieke Westermann; Rebekka Harting; Stephanie Grond; Silke Busch; Gerhard H. Braus

Cand1 can be separated into two functional polypeptides. C-terminal Cand1 binds first at the cullin adaptor site. N-terminal Cand1 blocks the neddylation site subsequently. Defects in the split fungal Cand1 impair development more than defects in CSN.


Eukaryotic Cell | 2008

The Nuclear Migration Protein NUDF/LIS1 Forms a Complex with NUDC and BNFA at Spindle Pole Bodies

Kerstin Helmstaedt; Karen Laubinger; Katja Vosskuhl; Özgür Bayram; Silke Busch; Michael Hoppert; Oliver Valerius; Stephan Seiler; Gerhard H. Braus

ABSTRACT Nuclear migration depends on microtubules, the dynein motor complex, and regulatory components like LIS1 and NUDC. We sought to identify new binding partners of the fungal LIS1 homolog NUDF to clarify its function in dynein regulation. We therefore analyzed the association between NUDF and NUDC in Aspergillus nidulans. NUDF and NUDC directly interacted in yeast two-hybrid experiments via NUDFs WD40 domain. NUDC-green fluorescent protein (NUDC-GFP) was localized to immobile dots in the cytoplasm and at the hyphal cortex, some of which were spindle pole bodies (SPBs). We showed by bimolecular fluorescence complementation microscopy that NUDC directly interacted with NUDF at SPBs at different stages of the cell cycle. Applying tandem affinity purification, we isolated the NUDF-associated protein BNFA (for binding to NUDF). BNFA was dispensable for growth and for nuclear migration. GFP-BNFA fusions localized to SPBs at different stages of the cell cycle. This localization depended on NUDF, since the loss of NUDF resulted in the cytoplasmic accumulation of BNFA. BNFA did not bind to NUDC in a yeast two-hybrid assay. These results show that the conserved NUDF and NUDC proteins play a concerted role at SPBs at different stages of the cell cycle and that NUDF recruits additional proteins specifically to the dynein complex at SPBs.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase

Kerstin Helmstaedt; Gabriele Heinrich; William N. Lipscomb; Gerhard H. Braus

The yeast chorismate mutase is regulated by tyrosine as feedback inhibitor and tryptophan as crosspathway activator. The monomer consists of a catalytic and a regulatory domain covalently linked by the loop L220s (212–226), which functions as a molecular hinge. Two monomers form the active dimeric enzyme stabilized by hydrophobic interactions in the vicinity of loop L220s. The role of loop L220s and its environment for enzyme regulation, dimerization, and stability was analyzed. Substitution of yeast loop L220s in place of the homologous loop from the corresponding and similarly regulated Aspergillus enzyme (and the reverse substitution) changed tyrosine inhibition to activation. Yeast loop L220s substituted into the Aspergillus enzyme resulted in a tryptophan-inhibitable enzyme. Monomeric yeast chorismate mutases could be generated by substituting two hydrophobic residues in and near the hinge region. The resulting Thr-212→Asp–Phe-28→Asp enzyme was as stable as wild type, but lost allosteric regulation and showed reduced catalytic activity. These results underline the crucial role of this molecular hinge for inhibition, activation, quaternary structure, and stability of yeast chorismate mutase.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Evolution of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae

Kerstin Helmstaedt; Axel Strittmatter; William N. Lipscomb; Gerhard H. Braus

Collaboration


Dive into the Kerstin Helmstaedt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silke Busch

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Sven Krappmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge