Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Howe is active.

Publication


Featured researches published by Kerstin Howe.


Nucleic Acids Research | 2004

The vertebrate genome annotation (Vega) database

Laurens Wilming; James Gilbert; Kerstin Howe; Stephen J. Trevanion; Tim Hubbard; Jennifer Harrow

The Vertebrate Genome Annotation (Vega) database (http://vega.sanger.ac.uk) was first made public in 2004 and has been designed to view manual annotation of human, mouse and zebrafish genomic sequences produced at the Wellcome Trust Sanger Institute. Since its initial release, the number of human annotated loci has more than doubled to close to 33 000 and now contains comprehensive annotation on 20 of the 24 human chromosomes, four whole mouse chromosomes and around 40% of the zebrafish Danio rerio genome. In addition, we offer manual annotation of a number of haplotype regions in mouse and human and regions of comparative interest in pig and dog that are unique to Vega.


Nucleic Acids Research | 2010

Ensembl’s 10th year

Paul Flicek; Bronwen Aken; Benoit Ballester; Kathryn Beal; Eugene Bragin; Simon Brent; Yuan Chen; Peter Clapham; Guy Coates; Susan Fairley; Stephen Fitzgerald; Julio Fernandez-Banet; Leo Gordon; Stefan Gräf; Syed Haider; Martin Hammond; Kerstin Howe; Andrew M. Jenkinson; Nathan Johnson; Andreas Kähäri; Damian Keefe; Stephen Keenan; Rhoda Kinsella; Felix Kokocinski; Gautier Koscielny; Eugene Kulesha; Daniel Lawson; Ian Longden; Tim Massingham; William M. McLaren

Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.


PLOS Biology | 2011

Modernizing Reference Genome Assemblies

Deanna M. Church; Valerie Schneider; Tina Graves; Katherine Auger; Fiona Cunningham; Nathan Bouk; Hsiu Chuan Chen; Richa Agarwala; William M. McLaren; Graham R. S. Ritchie; Derek Albracht; Milinn Kremitzki; Susan Rock; Holland Kotkiewicz; Colin Kremitzki; Aye Wollam; Lee Trani; Lucinda Fulton; Robert S. Fulton; Lucy Matthews; S. Whitehead; William Chow; James Torrance; Matthew Dunn; Glenn Harden; Glen Threadgold; Jonathan Wood; Joanna Collins; Paul Heath; Guy Griffiths

I have read the journals policy and have the following conflicts: Paul Flicek is married to the deputy editor of PLoS Medicine, Melissa Norton. Evan Eichler is on the board of Pacific Biosciences. Support for this work came from the Intramural Research Program of the NIH, The National Library of Medicine, the European Molecular Biology Laboratory, the Wellcome Trust (grant number 077198), and the Howard Hughes Medical Institute (EEE). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.


Zebrafish | 2012

Comparison of the Exomes of Common Carp (Cyprinus carpio) and Zebrafish (Danio rerio)

Christiaan V. Henkel; Ron P. Dirks; Hans J. Jansen; Maria Forlenza; Geert F. Wiegertjes; Kerstin Howe; Guido van den Thillart; Herman P. Spaink

Research on common carp, Cyprinus carpio, is beneficial for zebrafish research because of resources available owing to its large body size, such as the availability of sufficient organ material for transcriptomics, proteomics, and metabolomics. Here we describe the shot gun sequencing of a clonal double-haploid common carp line. The assembly consists of 511891 scaffolds with an N50 of 17 kb, predicting a total genome size of 1.4-1.5 Gb. A detailed analysis of the ten largest scaffolds indicates that the carp genome has a considerably lower repeat coverage than zebrafish, whilst the average intron size is significantly smaller, making it comparable to the fugu genome. The quality of the scaffolding was confirmed by comparisons with RNA deep sequencing data sets and a manual analysis for synteny with the zebrafish, especially the Hox gene clusters. In the ten largest scaffolds analyzed, the synteny of genes is almost complete. Comparisons of predicted exons of common carp with those of the zebrafish revealed only few genes specific for either zebrafish or carp, most of these being of unknown function. This supports the hypothesis of an additional genome duplication event in the carp evolutionary history, which--due to a higher degree of compactness--did not result in a genome larger than that of zebrafish.


Genome Research | 2017

Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.

Valerie Schneider; Tina A. Graves-Lindsay; Kerstin Howe; Nathan Bouk; Hsiu-Chuan Chen; Paul Kitts; Terence Murphy; Kim D. Pruitt; Françoise Thibaud-Nissen; Derek Albracht; Robert S. Fulton; Milinn Kremitzki; Vincent Magrini; Chris Markovic; Sean McGrath; Karyn Meltz Steinberg; Kate Auger; William Chow; Joanna Collins; Glenn Harden; Tim Hubbard; Sarah Pelan; Jared T. Simpson; Glen Threadgold; James Torrance; Jonathan Wood; Laura Clarke; Sergey Koren; Matthew Boitano; Paul Peluso

The human reference genome assembly plays a central role in nearly all aspects of todays basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health.


G3: Genes, Genomes, Genetics | 2017

A New Chicken Genome Assembly Provides Insight into Avian Genome Structure

Wesley C. Warren; LaDeana W. Hillier; Chad Tomlinson; Patrick Minx; Milinn Kremitzki; Tina Graves; Chris Markovic; Nathan Bouk; Kim D. Pruitt; Françoise Thibaud-Nissen; Valerie Schneider; Tamer Mansour; C. Titus Brown; Aleksey V. Zimin; R. J. Hawken; Mitch Abrahamsen; Alexis B. Pyrkosz; Mireille Morisson; Valerie Fillon; Alain Vignal; William Chow; Kerstin Howe; Janet E. Fulton; Marcia M. Miller; Peter V. Lovell; Claudio V. Mello; Morgan Wirthlin; Andrew S. Mason; Richard Kuo; David W. Burt

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


GigaScience | 2015

Using optical mapping data for the improvement of vertebrate genome assemblies

Kerstin Howe; Jonathan Wood

Optical mapping is a technology that gathers long-range information on genome sequences similar to ordered restriction digest maps. Because it is not subject to cloning, amplification, hybridisation or sequencing bias, it is ideally suited to the improvement of fragmented genome assemblies that can no longer be improved by classical methods. In addition, its low cost and rapid turnaround make it equally useful during the scaffolding process of de novo assembly from high throughput sequencing reads. We describe how optical mapping has been used in practice to produce high quality vertebrate genome assemblies. In particular, we detail the efforts undertaken by the Genome Reference Consortium (GRC), which maintains the reference genomes for human, mouse, zebrafish and chicken, and uses different optical mapping platforms for genome curation.


Open Biology | 2016

Structure and evolutionary history of a large family of NLR proteins in the zebrafish.

Kerstin Howe; Philipp H. Schiffer; Julia Zielinski; Thomas Wiehe; Gavin Laird; John C. Marioni; Onuralp Soylemez; Fyodor A. Kondrashov

Multicellular eukaryotes have evolved a range of mechanisms for immune recognition. A widespread family involved in innate immunity are the NACHT-domain and leucine-rich-repeat-containing (NLR) proteins. Mammals have small numbers of NLR proteins, whereas in some species, mostly those without adaptive immune systems, NLRs have expanded into very large families. We describe a family of nearly 400 NLR proteins encoded in the zebrafish genome. The proteins share a defining overall structure, which arose in fishes after a fusion of the core NLR domains with a B30.2 domain, but can be subdivided into four groups based on their NACHT domains. Gene conversion acting differentially on the NACHT and B30.2 domains has shaped the family and created the groups. Evidence of positive selection in the B30.2 domain indicates that this domain rather than the leucine-rich repeats acts as the pathogen recognition module. In an unusual chromosomal organization, the majority of the genes are located on one chromosome arm, interspersed with other large multigene families, including a new family encoding zinc-finger proteins. The NLR-B30.2 proteins represent a new family with diversity in the specific recognition module that is present in fishes in spite of the parallel existence of an adaptive immune system.


Genome Research | 2016

The pig X and Y Chromosomes: structure, sequence, and evolution.

Benjamin M. Skinner; Carole A. Sargent; Carol Churcher; Toby Hunt; Javier Herrero; Jane Loveland; Matthew Dunn; Sandra Louzada; Beiyuan Fu; William Chow; James Gilbert; Siobhan Austin-Guest; Kathryn Beal; Denise R. Carvalho-Silva; William Cheng; Daria Gordon; Darren Grafham; Matt Hardy; Jo Harley; Heidi Hauser; Philip Howden; Kerstin Howe; Kim Lachani; Peter Ji Ellis; Daniel Kelly; Giselle Kerry; James Kerwin; Bee Ling Ng; Glen Threadgold; Thomas Wileman

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


bioRxiv | 2018

Multiple laboratory mouse reference genomes define strain specific haplotypes and novel functional loci

Jingtao Lilue; Anthony G. Doran; Ian T Fiddes; Monica Abrudan; Joel Armstrong; Ruth Bennett; William Chow; Joanna Collins; Anne Czechanski; Petr Danecek; Mark Diekhans; Dirk-Dominic Dolle; Matthew Dunn; Richard Durbin; Dent Earl; Anne C. Ferguson-Smith; Paul Flicek; Jonathan Flint; Adam Frankish; Beiyuan Fu; Mark Gerstein; James Gilbert; Leo Goodstadt; Jennifer Harrow; Kerstin Howe; Mikhail Kolmogorov; Stefanie Koenig; Chris Lelliott; Jane Loveland; Richard Mott

The most commonly employed mammalian model organism is the laboratory mouse. A wide variety of genetically diverse inbred mouse strains, representing distinct physiological states, disease susceptibilities, and biological mechanisms have been developed over the last century. We report full length draft de novo genome assemblies for 16 of the most widely used inbred strains and reveal for the first time extensive strain-specific haplotype variation. We identify and characterise 2,567 regions on the current Genome Reference Consortium mouse reference genome exhibiting the greatest sequence diversity between strains. These regions are enriched for genes involved in defence and immunity, and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. Several immune related loci, some in previously identified QTLs for disease response have novel haplotypes not present in the reference that may explain the phenotype. We used these genomes to improve the mouse reference genome resulting in the completion of 10 new gene structures, and 62 new coding loci were added to the reference genome annotation. Notably this high quality collection of genomes revealed a previously unannotated gene (Efcab3-like) encoding 5,874 amino acids, one of the largest known in the rodent lineage. Interestingly, Efcab3-like−/− mice exhibit severe size anomalies in four regions of the brain suggesting a mechanism of Efcab3-like regulating brain development.

Collaboration


Dive into the Kerstin Howe's collaboration.

Top Co-Authors

Avatar

William Chow

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

James Gilbert

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Joanna Collins

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Matthew Dunn

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Milinn Kremitzki

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nathan Bouk

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Valerie Schneider

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Beiyuan Fu

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Glen Threadgold

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ian Sealy

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge