Kerstin Stingl
Federal Institute for Risk Assessment
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kerstin Stingl.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Kerstin Stingl; Stephanie Müller; Gerda Scheidgen-Kleyboldt; Martin Clausen; Berenike Maier
The Gram-negative gastric pathogen Helicobacter pylori depends on natural transformation for genomic plasticity, which leads to host adaptation and spread of resistances. Here, we show that H. pylori takes up covalently labeled fluorescent DNA preferentially at the cell poles and that uptake is dependent on the type IV secretion system ComB. By titration of external pH and detection of accessibility of the fluorophor by protons, we localized imported fluorescent DNA in the periplasm. Single molecule analysis revealed that outer membrane DNA transport occurred at a velocity of 1.3 kbp·s−1 and that previously imported DNA was reversibly extracted from the bacterium at pulling forces exceeding 23 pN. Thus, transport velocities were 10-fold higher than in Bacillus subtilis, and stalling forces were substantially lower. dsDNA stained with the intercalator YOYO-1 was transiently detected in the periplasm in wild-type H. pylori but was periplasmatically trapped in a mutant lacking the B. subtilis membrane-channel homolog ComEC. We conclude that H. pylori uses a two-step DNA uptake mechanism in which ComB transports dsDNA across the outer membrane at low force and poor specificity for DNA structure. Subsequently, Hp-ComEC mediates transport into the cytoplasm, leading to the release of the noncovalently bound DNA dye. Our findings fill the gap to propose a model for composite DNA uptake machineries in competent bacteria, all comprising the conserved ComEC channel for cytoplasmic membrane transport in combination with various transporters for access of external DNA to the cytoplasmic membrane.
Molecular Microbiology | 2011
Nora-Johanna Krüger; Kerstin Stingl
Transport of DNA across bacterial membranes during natural transformation is a fascinating and elaborate process. It requires the functional integrity of huge multi‐protein complexes present in the bacterial envelope at distinct loci. After successful mapping of essential gene products involved in natural transformation, current research focuses on the functional interplay of these components in order to understand the mechanisms how DNA enters the bacterium. Here, we discuss the model of a two‐step DNA uptake process in competent Gram‐negative and Gram‐positive bacteria. The first step comprises the transfer of DNA from the bacterial surface to the cytoplasmic membrane. For this purpose, bacteria use a variety of machineries, mostly, but not necessarily, sharing key homologous components. The second step is the translocation of DNA across the cytoplasmic membrane, a tight barrier at which ion gradients are established for energization of the cell. Crossing the latter is mediated by a protein complex harbouring a highly conserved membrane channel. On the basis of current data, at least the first step is uncoupled from the second. This review intends to highlight mechanistic features of both steps of bacterial DNA uptake by the integrative interpretation of genetic, biochemical and biophysical data.
Current Opinion in Microbiology | 2008
Madeleine Leisner; Kerstin Stingl; Erwin Frey; Berenike Maier
Distinct modes of gene expression enable isogenic populations of bacteria to maintain a diversity of phenotypes and to rapidly adapt to environmental changes. Competence development for DNA transformation in Bacillus subtilis has become a paradigm for a multimodal system which implements a genetic switch through a nonlinear positive feedback of a transcriptional master regulator. Recent advances in quantitative analysis at the single cell level in conjunction with mathematical modeling allowed a molecular level understanding of the switching probability between the noncompetent state and the competent state. It has been discovered that the genetic switching probability may be tuned by controlling noise in the transcription of the master regulator of competence, by timing of its expression, and by rewiring of the control circuit.
Molecular Microbiology | 2007
Madeleine Leisner; Kerstin Stingl; Joachim O. Rädler; Berenike Maier
Bacillus subtilis cell population divides into a competent fraction and a non‐competent fraction in the stationary phase. The transition from the non‐competent state (with basal ComK concentration) to the K‐state (with high ComK concentration) behaves like a bistable switch. To better understand the mechanism that sets the fraction of cells that switch into the K‐state (K‐fraction), we characterized the basal comK expression in individual non‐competent cells and found a large cell‐to‐cell variation. Basal expression rate increased exponentially, reached a maximum and decreased towards zero in the stationary phase. Concomitantly, the intrinsic switching rate increased and decreased with a time lag. When switching was induced prematurely by reduction of ComK proteolysis, the K‐fraction increased strongly. Our data support a model in which the average basal level of ComK raises during late exponential phase and due to noise in basal comK expression only those cells that are on the high end of comK expression trigger the autocatalytic feedback for ComK transcription. We show that a subsequent shut‐down of basal expression rate sets a ‘time‐window’ for switching and is thus involved in determining the K‐fraction in the bimodal population.
PLOS ONE | 2014
Nora-Johanna Krüger; Christiane Buhler; Azuka N. Iwobi; Ingrid Huber; Lüppo Ellerbroek; Bernd Appel; Kerstin Stingl
The unsuitability of the “CFU” parameter and the usefulness of cultivation-independent quantification of Campylobacter on chicken products, reflecting the actual risk for infection, is increasingly becoming obvious. Recently, real-time PCR methods in combination with the use of DNA intercalators, which block DNA amplification from dead bacteria, have seen wide application. However, much confusion exists in the correct interpretation of such assays. Campylobacter is confronted by oxidative and cold stress outside the intestine. Hence, damage caused by oxidative stress probably represents the most frequent natural death of Campylobacter on food products. Treatment of Campylobacter with peroxide led to complete loss of CFU and to significant entry of any tested DNA intercalator, indicating disruption of membrane integrity. When we transiently altered the metabolic state of Campylobacter by abolishing the proton-motive force or by inhibiting active efflux, CFU was constant but enhanced entry of ethidium bromide (EtBr) was observed. Consistently, ethidium monoazide (EMA) also entered viable Campylobacter, in particular when nutrients for bacterial energization were lacking (in PBS) or when the cells were less metabolically active (in stationary phase). In contrast, propidium iodide (PI) and propidium monoazide (PMA) were excluded from viable bacterial cells, irrespective of their metabolic state. As expected for a diffusion-limited process, the extent of signal reduction from dead cells depended on the temperature, incubation time and concentration of the dyes during staining, prior to crosslinking. Consistently, free protein and/or DNA present in varying amounts in the heterogeneous matrix lowered the concentration of the DNA dyes at the bacterial membrane and led to considerable variation of the residual signal from dead cells. In conclusion, we propose an improved approach, taking into account principles of method variability and recommend the implementation of process sample controls for reliable quantification of intact and potentially infectious units (IPIU) of Campylobacter by real-time PCR.
PLOS ONE | 2014
Jens A. Hammerl; Claudia Jäckel; Thomas Alter; Pawel Janzcyk; Kerstin Stingl; Marie Theres Knüver; Stefan Hertwig
Background Bacteriophage treatment is a promising tool to reduce Campylobacter in chickens. Several studies have been published where group II or group III phages were successfully applied. However, these two groups of phages are different regarding their host ranges and host cell receptors. Therefore, a concerted activity of group II and group III phages might enhance the efficacy of a treatment and decrease the number of resistant bacteria. Results In this study we have compared the lytic properties of some group II and group III phages and analysed the suitability of various phages for a reduction of C. jejuni in broiler chickens. We show that group II and group III phages exhibit different kinetics of infection. Two group III and one group II phage were selected for animal experiments and administered in different combinations to three groups of chickens, each containing ten birds. While group III phage CP14 alone reduced Campylobacter counts by more than 1 log10 unit, the concomitant administration of a second group III phage (CP81) did not yield any reduction, probably due to the development of resistance induced by this phage. One group of chickens received phage CP14 and, 24 hours later, group II phage CP68. In this group of animals, Campylobacter counts were reduced by more than 3 log10 units. Conclusion The experiments illustrated that Campylobacter phage cocktails have to be carefully composed to achieve the best results.
Frontiers in Microbiology | 2015
Jasna Kovač; Neža Čadež; Beatrix Stessl; Kerstin Stingl; Igor Gruntar; Matjaž Ocepek; Marija Trkov; Martin Wagner; Sonja Smole Možina
Campylobacteriosis is the leading zoonosis in the European Union with the majority of cases attributed to Campylobacter jejuni. Although the disease is usually self-limiting, some severe cases need to be treated with antibiotics, primarily macrolides and quinolones. However, the resistance to the latter is reaching alarming levels in most of the EU countries. To shed light on the expansion of antibiotic resistance in central Europe, we have investigated genetic similarity across 178 ciprofloxacin-resistant C. jejuni mostly isolated in Slovenia, Austria and Germany. We performed comparative genetic similarity analyses using allelic types of seven multilocus sequence typing housekeeping genes, and single nucleotide polymorphisms of a quinolone resistance determining region located within the DNA gyrase subunit A gene. This analysis revealed high genetic similarity of isolates from clonal complex ST-21 that carry gyrA allelic type 1 in all three of these central-European countries, suggesting these ciprofloxacin resistant isolates arose from a recent common ancestor and are spread clonally.
BMC Genomics | 2015
Andreas E. Zautner; Anne-Marie Goldschmidt; Andrea Thürmer; Jörg Schuldes; Oliver Bader; Raimond Lugert; Uwe Groß; Kerstin Stingl; Gabriela Salinas; Thomas Lingner
BackgroundCampylobacter species are the most prevalent bacterial pathogen causing acute enteritis worldwide. In contrast to Campylobacter jejuni, about 5xa0% of Campylobacter coli strains exhibit susceptibility to restriction endonuclease digestion by DpnI cutting specifically 5’-GmATC-3’ motifs. This indicates significant differences in DNA methylation between both microbial species.The goal of the study was to analyze the methylome of a C. coli strain susceptible to DpnI digestion, to identify its methylation motifs and restriction modification systems (RM-systems), and compare them to related organisms like C. jejuni and Helicobacter pylori.ResultsUsing one SMRT cell and the PacBio RS sequencing technology followed by PacBio Modification and Motif Analysis the complete genome of the DpnI susceptible strain C. coli BfR-CA-9557 was sequenced to 500-fold coverage and assembled into a single contig of 1.7 Mbp. The genome contains a CJIE1-like element prophage and is phylogenetically closer to C. coli clade 1 isolates than clade 3. 45,881 6-methylated adenines (ca. 2.7xa0% of genome positions) that are predominantly arranged in eight different methylation motifs and 1,788 4-methylated cytosines (ca. 0.1xa0%) have been detected. Only two of these motifs correspond to known restriction modification motifs. Characteristic for this methylome was the very high fraction of methylation of motifs with mostly above 99xa0%.ConclusionsOnly five dominant methylation motifs have been identified in C. jejuni, which have been associated with known RM-systems. C. coli BFR-CA-9557 shares one (RAATTY) of these, but four ORFs could be assigned to putative Type I RM-systems, seven ORFs to Type II RM-systems and three ORFs to Type IV RM-systems. In accordance with DpnI prescreening RM-system IIP, methylation of GATC motifs was detected in C. coli BfR-CA-9557. A homologous IIP RM-system has been described for H. pylori. The remaining methylation motifs are specific for C. coli BfR-CA-9557 and have been neither detected in C. jejuni nor in H. pylori.The results of this study give us new insights into epigenetics of Campylobacteraceae and provide the groundwork to resolve the function of RM-systems in C. coli.
PLOS Pathogens | 2016
Nora-Johanna Krüger; Marie-Theres Knüver; Anna Zawilak-Pawlik; Bernd Appel; Kerstin Stingl
As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium’s multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB) displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb) in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen’s high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development.
Scientific Reports | 2017
Bettina Rosner; Anika Schielke; Xavier Didelot; Friederike Kops; Janina Breidenbach; Niklas Willrich; Greta Gölz; Thomas Alter; Kerstin Stingl; Christine Josenhans; Sebastian Suerbaum; Klaus Stark
Campylobacter infection is the most commonly notified bacterial enteritis in Germany. We performed a large combined case-control and source attribution study (Nov 2011-Feb 2014) to identify risk factors for sporadic intestinal Campylobacter infections and to determine the relative importance of various animal sources for human infections in Germany. We conducted multivariable logistic regression analysis to identify risk factors. Source attribution analysis was performed using the asymmetric island model based on MLST data of human and animal/food isolates. As animal sources we considered chicken, pig, pet dog or cat, cattle, and poultry other than chicken. Consumption of chicken meat and eating out were the most important risk factors for Campylobacter infections. Additional risk factors were preparation of poultry meat in the household; preparation of uncooked food and raw meat at the same time; contact with poultry animals; and the use of gastric acid inhibitors. The mean probability of human C. jejuni isolates to originate from chickens was highest (74%), whereas pigs were a negligible source for C. jejuni infections. Human C. coli isolates were likely to originate from chickens (56%) or from pigs (32%). Efforts need to be intensified along the food chain to reduce Campylobacter load, especially on chicken meat.