Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Troidl is active.

Publication


Featured researches published by Kerstin Troidl.


Circulation Research | 2006

The Range of Adaptation by Collateral Vessels After Femoral Artery Occlusion

Inka Eitenmüller; Oscar L. Volger; Alexander Kluge; Kerstin Troidl; Miroslav Barancik; Wei-Jun Cai; Matthias Heil; Frederic Pipp; Silvia Fischer; Anton J.G. Horrevoets; Thomas Schmitz-Rixen; Wolfgang Schaper

Natural adaptation to femoral artery occlusion in animals by collateral artery growth restores only ≈35% of adenosine-recruitable maximal conductance (Cmax) probably because initially elevated fluid shear stress (FSS) quickly normalizes. We tested the hypothesis whether this deficit can be mended by artificially increasing FSS or whether anatomical restraints prevent complete restitution. We chronically increased FSS by draining the collateral flow directly into the venous system by a side-to-side anastomosis between the distal stump of the occluded femoral artery and the accompanying vein. After reclosure of the shunt collateral flow was measured at maximal vasodilatation. Cmax reached 100% already at day 7 and had, after 4 weeks, surpassed (2-fold) the Cmax of the normal vasculature before occlusion. Expression profiling showed upregulation of members of the Rho-pathway (RhoA, cofilin, focal adhesion kinase, vimentin) and the Rho-antagonist Fasudil markedly inhibited arteriogenesis. The activities of Ras and ERK-1,-2 were markedly increased in collateral vessels of the shunt experiment, and infusions of L-NAME and L-NNA strongly inhibited MAPK activity as well as shunt-induced arteriogenesis. Infusions of the peroxinitrite donor Sin-1 inhibited arteriogenesis. The radical scavengers urate, ebselen, SOD, and catalase had no effect. We conclude that increased FSS can overcome the anatomical restrictions of collateral arteries and is potentially able to completely restore maximal collateral conductance. Increased FSS activates the Ras-ERK-, the Rho-, and the NO- (but not the Akt-) pathway enabling collateral artery growth.


Journal of Cellular and Molecular Medicine | 2009

Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction

Christian Troidl; Helge Möllmann; Holger Nef; F. Masseli; S. Voss; S. Szardien; M. Willmer; A. Rolf; J. Rixe; Kerstin Troidl; Sawa Kostin; C.W. Hamm; Albrecht Elsässer

An important goal in cardiology is to minimize myocardial necrosis and to support a discrete but resilient scar formation after myocardial infarction (MI). Macrophages are a type of cells that influence cardiac remodelling during MI. Therefore, the goal of the present study was to investigate their transcriptional profile and to identify the type of activation during scar tissue formation. Ligature of the left anterior descending coronary artery was performed in mice. Macrophages were isolated from infarcted tissue using magnetic cell sorting after 5 days. The total RNA of macrophages was subjected to microarray analysis and compared with RNA from MI and LV‐control. mRNA abundance of relevant targets was validated by quantitative real‐time PCR 2, 5 and 10 days after MI (qRT‐PCR). Immunohistochemistry was performed to localize activation type‐specific proteins. The genome scan revealed 68 targets predominantly expressed by macrophages after MI. Among these targets, an increased mRNA abundance of genes, involved in both the classically (tumour necrosis factor α, interleukin 6, interleukin 1β) and the alternatively (arginase 1 and 2, mannose receptor C type 1, chitinase 3‐like 3) activated phenotype of macrophages, was found 5 days after MI. This observation was confirmed by qRT‐PCR. Using immunohistochemistry, we confirmed that tumour necrosis factor α, representing the classical activation, is strongly transcribed early after ligature (2 days). It was decreased after 5 and 10 days. Five days after MI, we found a fundamental change towards alternative activation of macrophages with up‐regulation of arginase 1. Our results demonstrate that macrophages are differentially activated during different phases of scar tissue formation after MI. During the early inflammatory phase, macrophages are predominantly classically activated, whereas their phenotype changes during the important transition from inflammation to scar tissue formation into an alternatively activated type.


Journal of Cellular and Molecular Medicine | 2009

Trpv4 induces collateral vessel growth during regeneration of the arterial circulation

Christian Troidl; Kerstin Troidl; W. Schierling; Wei-Jun Cai; Holger Nef; Helge Möllmann; Sava Kostin; Sylvia Schimanski; Linda Hammer; Albrecht Elsässer; Thomas Schmitz-Rixen; Wolfgang Schaper

The development of a collateral circulation (arteriogenesis), bypassing an arterial occlusion, is important for tissue survival, but it remains functionally defective. Micro array data of growing collateral vessels, exposed to chronically elevated fluid shear stress (FSS), showed increased transcription of the transient receptor potential cation channel, subfamily V, member 4 (Trpv4). Thus, the aim of this study was to investigate the role of the shear stress sensitive Trpv4 in transmitting this physical stimulus into an active growth response. qRT‐PCR at different time points during the growth of collateral vessels after femoral artery ligature (FAL) in rats showed a strong positive correlation of Trpv4 transcription and the intensity of FSS. An increased protein expression of Trpv4 was localized in the FSS‐sensing endothelium by means of confocal immunohistochemistry. Cultured porcine endothelial cells showed a dose‐dependent expression of Trpv4 and an increased level of Ki67‐positive cells upon treatment with 4α‐Phorbol 12,13‐didecanoate (4αPDD), a specific Trpv4 activator. This was also demonstrated by flow culture experiments. These results were confirmed by in vivo application of 4αPDD in rabbit hind limb circulation via an osmotic mini‐pump after FAL. Trpv4 expression as well as Ki67‐positive staining was significantly increased in collateral vessels. Finally, 4αPDD treatment after FAL led to a 61% (215.5 ml/min/mmHg versus 350 ml/min/mmHg) recovery of conductance when compared with the non‐occluded artery. Cell culture and in vivo studies demonstrate that an FSS‐ or a 4αPDD‐induced activation of Trpv4 leads to an active proliferation of vascular cells and finally triggers collateral growth. Trpv4, a well‐known FSS‐sensitive vasodilator, has hitherto not been implicated in active growth processes of collateral arteries. This new function may lead to new therapeutic strategies for the treatment of arterial occlusive diseases.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Actin-Binding Rho Activating Protein (Abra) Is Essential for Fluid Shear Stress-Induced Arteriogenesis

Kerstin Troidl; Inka Rüding; Wei-Jun Cai; Yvonne Mücke; Leonie Grossekettler; Izabela Piotrowska; Hanna Apfelbeck; W. Schierling; Oscar L. Volger; Anton J.G. Horrevoets; Karsten Grote; Thomas Schmitz-Rixen; Wolfgang Schaper; Christian Troidl

Objective—Arteriogenesis, the development of a collateral circulation, is important for tissue survival but remains functionally defective because of early normalization of fluid shear stress (FSS). Using a surgical model of chronically elevated FSS we showed that rabbits exhibited normal blood flow reserve after femoral artery ligature (FAL). Inhibition of the Rho pathway by Fasudil completely blocked the beneficial effect of FSS. In a genome-wide gene profiling we identified actin-binding Rho activating protein (Abra), which was highly upregulated in growing collaterals. Methods and Results—qRT-PCR and Western blot confirmed highly increased FSS-dependent expression of Abra in growing collaterals. NO blockage by L-NAME abolished FSS-generated Abra expression as well as the whole arteriogenic process. Cell culture studies demonstrated an Abra-triggered proliferation of smooth muscle cells through a mechanism that requires Rho signaling. Local intracollateral adenoviral overexpression of Abra improved collateral conductance by 60% in rabbits compared to the natural response after FAL. In contrast, targeted deletion of Abra in CL57BL/6 mice led to impaired arteriogenesis. Conclusions—FSS-induced Abra expression during arteriogenesis is triggered by NO and leads to stimulation of collateral growth by smooth muscle cell proliferation.


Diabetes-metabolism Research and Reviews | 2012

Arteriogenesis versus angiogenesis in peripheral artery disease.

Kerstin Troidl; Wolfgang Schaper

Different forms of vessel growth in the adult organism contribute to the compensation for an occluded artery. We here summarize the major differences between arteriogenesis and angiogenesis and provide evidence in favour of a therapeutic stimulation of collateral growth. In addition, we outline current knowledge about regulatory mechanisms transducing the initial physical stimulus into a cellular response. As an example, the role of nitric oxide during arteriogenesis is discussed, and finally, we propose a mechanism of how an efficient decision is made that makes the larger collaterals larger and the smaller ones smaller. Copyright


Journal of Vascular Research | 2009

The Role of Angiogenic Growth Factors in Arteriogenesis

W. Schierling; Kerstin Troidl; Christian Troidl; Thomas Schmitz-Rixen; Wolfgang Schaper; Inka Eitenmüller

Background/Aims: Collateral vessels restore only about 40% of the maximum dilatory reserve after femoral artery occlusion, whereas complete normalization is reached by increased fluid shear stress (FSS). We studied the role of known potent angiogenic growth factors (separately or in combination) in arteriogenesis by determining their expression in FSS-stimulated collaterals and close-to-collateral infusion of growth factor peptides in a rabbit model of femoral artery occlusion. Methods: Values of maximum collateral conductance (Cmax) and post mortem angiograms were compared to those achievable by high FSS. mRNA levels of growth factor ligands and receptors were determined in FSS-stimulated collaterals. Results: Seven days after vessel occlusion, FSS-stimulated legs showed a Cmax not significantly different from that of not occluded femoral arteries. Arteriogenesis was significantly less enhanced after growth factor treatment (MCP-1 86%, Ad5.1-FGF-4 75%, bFGF 72%, PDGF 64%, VEGF 50% of Cmax after FSS stimulation). RT-PCR showed no differential expression of FGF receptors, but an up-regulation of VEGF-receptor-2. Conclusion: The most potent known angiogenic growth factors at high pharmacological doses reach only a fraction of the maximum conductance obtained by high FSS. Arteriogenesis differs from angiogenesis, so the main focus to markedly improve arteriogenesis should be put on the underlying mechanisms of shear stress.


Journal of Cardiovascular Pharmacology | 2010

Effects of Endogenous Nitric Oxide and of DETA NONOate in Arteriogenesis

Kerstin Troidl; Silvia Tribulova; Wei-Jun Cai; Inka Rüding; Hanna Apfelbeck; W. Schierling; Christian Troidl; Thomas Schmitz-Rixen; Wolfgang Schaper

Previous studies showed that targeted endothelial nitric oxide synthase (eNOS) disruption in mice with femoral artery occlusion does not impede and transgenic eNOS overexpression does not stimulate collateral artery growth after femoral artery occlusion, suggesting that nitric oxide from eNOS does not play a role in arteriogenesis. However, pharmacologic nitric oxide synthase inhibition with L-NAME markedly blocks arteriogenesis, suggestive of an important role of nitric oxide. To solve the paradox, we studied targeted deletion of eNOS and of inducible nitric oxide synthase (iNOS) in mice and found that only iNOS knockout could partially inhibit arteriogenesis. However, the combination of eNOS knockout and treatment with the iNOS inhibitor L-NIL completely abolished arteriogenesis. mRNA transcription studies (reverse transcriptase-polymerase chain reaction) performed on collateral arteries of rats showed that eNOS and especially iNOS (but not neural nitric oxide synthase) become upregulated in shear stress-stimulated collateral vessels, which supports the hypothesis that nitric oxide is necessary for arteriogenesis but that iNOS plays an important part. This was strengthened by the observation that the nitric oxide donor DETA NONOate strongly stimulated collateral artery growth, activated perivascular monocytes, and increased proliferation markers. Shear stress-induced nitric oxide may activate the innate immune system and activate iNOS. In conclusion, arteriogenesis is completely dependent on the presence of nitric oxide, a large part of it coming from mononuclear cells.


Journal of Clinical Investigation | 2015

P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction

Shengpeng Wang; Andras Iring; Boris Strilic; Julián Albarrán Juárez; Harmandeep Kaur; Kerstin Troidl; Sarah Tonack; Joachim C. Burbiel; Christa E. Müller; Ingrid Fleming; Jon O. Lundberg; Nina Wettschureck; Stefan Offermanns

Elevated blood pressure is a key risk factor for developing cardiovascular diseases. Blood pressure is largely determined by vasodilatory mediators, such as nitric oxide (NO), that are released from the endothelium in response to fluid shear stress exerted by the flowing blood. Previous work has identified several mechanotransduction signaling processes that are involved in fluid shear stress-induced endothelial effects, but how fluid shear stress initiates the response is poorly understood. Here, we evaluated human and bovine endothelial cells and found that the purinergic receptor P2Y2 and the G proteins Gq/G11 mediate fluid shear stress-induced endothelial responses, including [Ca2+]i transients, activation of the endothelial NO synthase (eNOS), phosphorylation of PECAM-1 and VEGFR-2, as well as activation of SRC and AKT. In response to fluid shear stress, endothelial cells released ATP, which activates the purinergic P2Y2 receptor. Mice with induced endothelium-specific P2Y2 or Gq/G11 deficiency lacked flow-induced vasodilation and developed hypertension that was accompanied by reduced eNOS activation. Together, our data identify P2Y2 and Gq/G11 as a critical endothelial mechanosignaling pathway that is upstream of previously described mechanotransduction processes and demonstrate that P2Y2 and Gq/G11 are required for basal endothelial NO formation, vascular tone, and blood pressure.


Journal of Cerebral Blood Flow and Metabolism | 2009

Increased intravascular flow rate triggers cerebral arteriogenesis

W. Schierling; Kerstin Troidl; Clemens Mueller; Christian Troidl; H. Wustrack; Georg Bachmann; Piotr Kasprzak; Wolfgang Schaper; Thomas Schmitz-Rixen

Peripheral arteriogenesis is distinctly enhanced by increased fluid shear stress. Thus, the aim of this study was to investigate in the rat brain whether increased fluid shear stress can also stimulate cerebral arteriogenesis. To increase fluid shear stress in the cerebral circulation, we developed different shear stress models as the ligature of both common carotid arteries (Double-Ligature model), bilateral carotid ligature followed by creation of a unilateral arterio-venous fistula (two-stage protocol, Ligature-Shunt model), and unilateral arterio-venous fistula-creation alone (Solo-Shuntmodel). Blood flow changes were monitored in vivo by quantitative magnetic resonance imaging-analysis. Cerebral arteriogenesis was analyzed by magnetic resonance imaging and contrast agent-angiography. For proliferation and accumulation of mononuclear cells, immunohistochemistry was performed. During the 14 days-observation period, blood flow increased maximal by 5.5-fold in the A. basilaris and 10.3-fold in the fistula-sided A. cerebri posterior of the Ligature-Shunt model. Considerable vessel growth was found in all shear stress-stimulated arteries. Comparative analysis of vessel length and diameter versus blood flow indicated a correlation between the growth of cerebral collaterals and rising intravascular flow rates (R2 = 0.90/0.96). Immunohistochemistry showed the typical phases of arteriogenesis and accumulation of mononuclear cells. In conclusion, we provide evidence that fluid shear stress is not only the pivotal trigger of peripheral but also of cerebral arteriogenesis.


European Journal of Vascular and Endovascular Surgery | 2011

Cerebral Arteriogenesis is Enhanced by Pharmacological as Well as Fluid-Shear-Stress Activation of the Trpv4 Calcium Channel

W. Schierling; Kerstin Troidl; Hanna Apfelbeck; Christian Troidl; Piotr Kasprzak; Wolfgang Schaper; Thomas Schmitz-Rixen

OBJECTIVES This study aimed to determine the importance of the shear-stress-sensitive calcium channels Trpc1, Trpm7, Trpp2, Trpv2 (transient receptor potential cation channel, subfamily V, member 2) and Trpv4 for cerebral arteriogenesis. The expression profiles were analysed, comparing the stimulation of collateral growth by target-specific drugs to that achieved by maximum increased fluid shear stress (FSS). DESIGN A prospective, controlled study wherein rats were subjected to bilateral carotid artery ligature (BCL), or BCL + arteriovenous fistula, or BCL + drug application. METHODS Messenger RNA (mRNA) abundance and protein expression were determined in FSS-stimulated cerebral collaterals by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Drugs were applied via osmotic mini pumps and arteriogenesis was evaluated by post-mortem angiograms and Ki67 immunostaining. RESULTS Trpv4 was the only mechanosensitive Trp channel showing significantly increased mRNA abundance and protein expression after FSS stimulation. Activation of Trpv4 by 4α-phorbol-12,13-didecanoate caused significantly enhanced collateral growth (length: 4.43 ± 0.20 mm and diameter: 282.6 ± 8.1 μm) compared with control (length: 3.80 ± 0.06 mm and diameter: 237.3 ± 5.3 μm). Drug application stimulated arteriogenesis to almost the same extent as did maximum FSS stimulation (length: 4.61 ± 0.07 mm and diameter: 327.4 ± 12.6 μm). CONCLUSIONS Trpv4 showed significantly increased expression in FSS-stimulated cerebral collaterals. Pharmacological Trpv4 activation enhanced cerebral arteriogenesis, pinpointing Trpv4 as a possible candidate for the development of new therapeutic concepts.

Collaboration


Dive into the Kerstin Troidl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Jun Cai

Central South University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge