Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keryn I. Paul is active.

Publication


Featured researches published by Keryn I. Paul.


Forest Ecology and Management | 2002

Change in soil carbon following afforestation

Keryn I. Paul; P. J. Polglase; J.G. Nyakuengama; P. K. Khanna

Abstract Quantifying changes in soil C may be an important consideration under large-scale afforestation or reforestation. We reviewed global data on changes in soil C following afforestation, available from 43 published or unpublished studies, encompassing 204 sites. Data were highly variable, with soil C either increasing or decreasing, particularly in young ( 10 and The most important factors affecting change in soil C were previous land use, climate and the type of forest established. Results suggest that most soil C was lost when softwoods, particularly Pinus radiata plantations, were established on ex-improved pastoral land in temperate regions. Accumulation of soil C was greatest when deciduous hardwoods, or N2-fixing species (either as an understorey or as a plantation), were established on ex-cropped land in tropical or subtropical regions. Long-term management regimes (e.g. stocking, weed control, thinning, fertiliser application and fire management) may also influence accumulation of soil C. Accumulation is maximised by maintaining longer (20–50 years) forest rotations. Furthermore, inclusion of litter in calculations reversed the observed average decrease in soil C, so that amount of C in soil and litter layer was greater than under preceding pasture.


Soil Biology & Biochemistry | 2002

Modelling C and N dynamics in forest soils with a modified version of the CENTURY model

Miko U. F. Kirschbaum; Keryn I. Paul

Abstract The CENTURY model of soil organic matter turn-over developed by Parton and co-workers has been used successfully for grasslands to predict dynamics of C, N and other nutrients. It was tested here for decomposition of a range of forest litters and for N mineralisation in forest soils. Modifications to the CENTURY model were necessary to match model output to empirical findings. These modifications included: (1) incorporation of additional woody litter pools (i.e. fine-wood and coarse-wood) (2) allowing the N content of soil organic matter (SOM) pools to vary (3) constraining N mineralisation and immobilisation to the active SOM pool (4) incorporation of a small flux of mineral N to the resistant SOM pool (5) allowance of mycorrhizal uptake of N, and (6) re-formulation of temperature and moisture effects on decomposition. Other possible changes, such as giving greater flexibility to the critical N concentration for mineralisation, were tested but found not to improve model performance. The modified model largely accounted for the effects of initial lignin and N concentration on subsequent litter decomposition rate, litter N concentrations and critical N concentrations for the commencement of mineralisation. Consequently, the model could successfully simulate realistic time courses of N immobilisation and subsequent mineralisation for a range of litter types. The present model also successfully predicted the critical N concentration for N mineralisation across a wide range of litter samples from forests and other vegetation sources. Net N mineralisation was successfully simulated in forest soils, which were either untreated, irrigated or fertilised.


Functional Plant Biology | 2006

A comment on the quantitative significance of aerobic methane release by plants

Miko U. F. Kirschbaum; Dan Bruhn; David M. Etheridge; John R. Evans; Graham D. Farquhar; Roger M. Gifford; Keryn I. Paul; Anthony J. Winters

A recent study by Keppler et al. (2006; Nature 439, 187-191) demonstrated CH4 emission from living and dead plant tissues under aerobic conditions. This work included some calculations to extrapolate the findings from the laboratory to the global scale and led various commentators to question the value of planting trees as a greenhouse mitigation option. The experimental work of Keppler et al. (2006) appears to be largely sound, although some concerns remain about the quantification of emission rates. However, whilst accepting their basic findings, we are critical of the method used for extrapolating results to a global scale. Using the same basic information, we present alternative calculations to estimate global aerobic plant CH4 emissions as 10-60 Mt CH4 year-1. This estimate is much smaller than the 62-236 Mt CH4 year-1 reported in the original study and can be more readily reconciled within the uncertainties in the established sources and sinks in the global CH4 budget. We also assessed their findings in terms of their possible relevance for planting trees as a greenhouse mitigation option. We conclude that consideration of aerobic CH4 emissions from plants would reduce the benefit of planting trees by between 0 and 4.4%. Hence, any offset from CH4 emission is small in comparison to the significant benefit from carbon sequestration. However, much critical information is still lacking about aerobic CH4 emission from plants. For example, we do not yet know the underlying mechanism for aerobic CH4 emission, how CH4 emissions change with light, temperature and the physiological state of leaves, whether emissions change over time under constant conditions, whether they are related to photosynthesis and how they relate to the chemical composition of biomass. Therefore, the present calculations must be seen as a preliminary attempt to assess the global significance from a basis of limited information and are likely to be revised as further information becomes available.


Soil Research | 2004

Calibration of the RothC model to turnover of soil carbon under eucalypts and pines

Keryn I. Paul; Phil Polglase

Abstract The FullCAM model was developed for full carbon accounting in agriculture and forests at project and national scales. For forest systems, FullCAM links the empirical CAMFor model to models of tree growth (3PG), litter decomposition (GENDEC), and soil carbon turnover (RothC). Our objective was to calibrate RothC within the FullCAM framework using 2 long-term forestry experiments where productivity had been manipulated and archived and new soil samples were available for analysis of carbon within the various pools described by RothC. Inputs of carbon to soil at these trials were estimated by calibrating FullCAM to temporal data on above-ground growth, litterfall, and accumulation of litter. Two alternative submodels are available in FullCAM (CAMFor and GENDEC) for predicting decomposition of litter, and thus the input of carbon into the soil. Calibration of RothC was most sensitive to the partitioning of carbon during decomposition of debris between that lost as CO2 and that transferred to soil. Turnover of soil carbon was best simulated when the proportion of carbon lost to CO2 from relatively labile pools of debris was 77% (when simulated by CAMFor) and 95% (when simulated by GENDEC), whereas resistant pools of debris lost about 40% to CO2 during decomposition. Although rates of decomposition of pools of soil carbon were originally developed in RothC for agricultural soils, these constants were found to be also suitable for soils under plantation systems.


Global Change Biology | 2015

Reforestation with native mixed‐species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades

Shaun C. Cunningham; Timothy R. Cavagnaro; Ralph Mac Nally; Keryn I. Paul; Patrick J. Baker; Jason Beringer; James R. Thomson; Ross M. Thompson

Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.


Tree Physiology | 2013

Electrical capacitance as a rapid and non-invasive indicator of root length

Tim W. Ellis; Wayne Murray; Keryn I. Paul; Laimonis Kavalieris; Jim Brophy; Chris Williams; Manuel Maass

Measurement of tree root systems by conventional methods is a Herculean task. The electrical capacitance method offers a rapid and non-destructive alternative, but it has largely been restricted to herbaceous species. The Dalton Model has been the main concept for understanding equivalent root circuitry; it proposed that roots were cylindrical capacitors with epidermis and xylem being the external and internal electrodes. Capacitance (C) therefore varied in proportion to root surface area (A), mass (M), length (L) and relative permittivity of the plant tissue ε(r). We used the capacitance method on forest and plantation trees (13 to circa 100 y.o.) in situ to test hypotheses derived from implicit assumptions about tree-root-soil circuitry. We concluded: C was not confounded by intermingled root systems; C was strongly related to diameter at breast height (DBH); C was less strongly related to DBH for multiple species at the same site; and C was a poor indicator of DBH, M and L across species, ages and sites. We proposed that ε(r) was proportional to root tissue density ρ and fitted a model with P < 0.05 and R(2) = 0.70 when the three immature (13 y.o.) trees were excluded. There was no significant difference (P = 0.28) between the parameters of the tree model (excluding the immature trees) and one of the same form fitted to data from bean (Vicia faba L.; R(2) = 0.55). Together, the data sets suggested (R(2) = 0.94; n = 26) that there may exist a general relationship of this form applied over two orders of magnitude of L.


Forest Ecology and Management | 2003

Soil water under forests (SWUF): a model of water flow and soil water content under a range of forest types

Keryn I. Paul; P. J. Polglase; A.M. O’Connell; J.C. Carlyle; Philip J. Smethurst; P. K. Khanna; Dale Worledge

A new model (soil water under forest, SWUF) is suitable for predicting the daily water content within both surface soil layers and the sub-soil under a range of forest types, and is suitable for use in models of mineralisation of soil organic matter as well as models of forest production. This empirical cascading bucket-type model was largely derived by combining algorithms from well-tested models for prediction of soil water under agriculture. However, it extends these to predict the water content of the litter layer, and the influence of the litter layer, weeds and understorey, and site mounding, on SWUFs. Measurements of soil water content under native forest, and pine and eucalypt plantations, were available for 59 sites across southern Australia. The model was parameterised to about half (27) of these datasets, while the remainder (32) were used for validation, for which the model explained 86% of the variation in observed water content. Sensitivity analysis indicated that important input data required were the observed upper limit of water content, bulk density, and climatic data, particularly solar radiation. The estimated area of ground that was covered by litter and canopy were also important inputs.


Ecosphere | 2015

Guidelines for constructing allometric models for the prediction of woody biomass: How many individuals to harvest?

Stephen H. Roxburgh; Keryn I. Paul; David Clifford; Jacqueline R. England; R.J. Raison

The recent development of biomass markets and carbon trading has led to increasing interest in obtaining accurate estimates of woody biomass production. Aboveground woody biomass (B) is often estimated indirectly using allometric models, where representative individuals are harvested and weighed, and regression analyses used to generalise the relationship between individual mass and more readily measured non-destructive attributes such as plant height and stem diameter (D). To satisfy regulatory requirements and/or to provide market confidence, allometric models must be based on sufficient data to ensure predictions are accurate, whilst at the same time being practically and financially achievable. Using computer resampling experiments and allometric models of the form B = aDb the trade-off between increasing the sample size of individuals to construct an allometric model and the accuracy of the resulting biomass predictions was assessed. A range of algorithms for selecting individuals across the stem diameter size-class range were also explored. The results showed marked variability across allometric models in the required number of individuals to satisfy a given level of precision. A range of 17–95 individuals were required to achieve biomass predictions with a standard deviation within 5% of the mean for the best performing stem diameter selection algorithm, while 25–166 individuals were required for the poorest. This variability arises from (a) inherent uncertainty in the relationship between diameter and biomass across allometric models, and (b) differences between the diameter size-class distribution of individuals used to construct a model, and the diameter size-class distribution of the population to which the model is applied. Allometric models are a key component of quantifying land-based sequestration activities, but despite their importance little attention has been given to ensuring the methods used in their development will yield sufficiently accurate biomass predictions. The results from this study address this gap and will be of use in guiding the development of new allometric models; in assessing the suitability of existing allometric models; and in facilitating the estimation of uncertainty in biomass predictions.


Revista Brasileira De Ciencia Do Solo | 2011

Modeling changes in organic carbon stocks for distinct soils in southeastern brazil after four eucalyptus rotations using the century model

Augusto Miguel Nascimento Lima; Ivo Ribeiro da Silva; Jose Luis Stape; Eduardo Sá Mendonça; Roberto Ferreira Novais; Nairam Félix de Barros; Júlio César Lima Neves; Keryn I. Paul; Fernanda Schulthais; Phill Polglase; John Raison; Emanuelle Mercês Barros Soares

Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginopolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.


Rangeland Journal | 2015

Evaluating carbon storage in restoration plantings in the Tasmanian Midlands, a highly modified agricultural landscape

Lynda D. Prior; Keryn I. Paul; Neil J. Davidson; Mark J. Hovenden; Scott Nichols; David J. M. S. Bowman

In recent years there have been incentives to reforest cleared farmland in southern Australia to establish carbon sinks, but the rates of carbon sequestration by such plantings are uncertain at local scales. We used a chronosequence of 21 restoration plantings aged from 6 to 34 years old to measure how above- and belowground carbon relates to the age of the planting. We also compared the amount of carbon in these plantings with that in nearby remnant forest and in adjacent cleared pasture. In terms of total carbon storage in biomass, coarse woody debris and soil, young restoration plantings contained on average much less biomass carbon than the remnant forest (72 versus 203 Mg C ha–1), suggesting that restoration plantings had not yet attained maximum biomass carbon. Mean biomass carbon accumulation during the first 34 years after planting was estimated as 4.2 ± 0.6 Mg C ha–1 year–1, with the 10th and 90th quantile regression estimates being 2.1 and 8.8 Mg C ha–1 year–1. There were no significant differences in soil organic carbon (0–30-cm depth) between the plantings, remnant forest and pasture, with all values in the range of 59–67 Mg ha–1. This is in line with other studies showing that soil carbon is slow to respond to changes in land use. Based on our measured rates of biomass carbon accumulation, it would require ~50 years to accumulate the average carbon content of remnant forests. However, it is more realistic to assume the rates will slow with time, and it could take over 100 years to attain a new equilibrium of biomass carbon stocks.

Collaboration


Dive into the Keryn I. Paul's collaboration.

Top Co-Authors

Avatar

Jacqueline R. England

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Stephen H. Roxburgh

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

P. J. Polglase

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John S. Larmour

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Kim Brooksbank

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Phil Polglase

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Tom Lewis

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. K. Khanna

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge