Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kesen Dang is active.

Publication


Featured researches published by Kesen Dang.


European Journal of Immunology | 1998

Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens

Jong J. Kim; Neil N. Trivedi; Liesl K. Nottingham; Lake Morrison; Anthony Tsai; Yin Hu; Sundarasamy Mahalingam; Kesen Dang; Lois Ahn; Nicole K. Doyle; Darren M. Wilson; Michael A. Chattergoon; Ara A. Chalian; Jean D. Boyer; Michael G. Agadjanyan; David B. Weiner

Immunization with nucleic acids has been shown to induce both antigen‐specific cellular and humoral immune responses in vivo. We hypothesize that immunization with DNA could be enhanced by directing specific immune responses induced by the vaccine based on the differential correlates of protection known for a particular pathogen. Recently we and others reported that specific immune responses generated by DNA vaccine could be modulated by co‐delivery of gene expression cassettes encoding for IL‐12, granulocyte‐macrophage colony‐stimulating factor and the co‐stimulatory molecule CD86. To further engineer the immune response in vivo, we investigated the induction and regulation of immune responses following the co‐delivery of pro‐inflammatory cytokine (IL‐1α, TNF‐α, and TNF‐β), Th1 cytokine (IL‐2, IL‐12, IL‐15, and IL‐18), and Th2 cytokine (IL‐4, IL‐5 and IL‐10) genes. We observed enhancement of antigen‐specific humoral response with the co‐delivery of Th2 cytokine genes IL‐4, IL‐5, and IL‐10 as well as those of IL‐2 and IL‐18. A dramatic increase in antigen‐specific T helper cell proliferation was seen with IL‐2 and TNF‐α gene co‐injections. In addition, we observed a significant enhancement of the cytotoxic response with the co‐administration of TNF‐α and IL‐15 genes with HIV‐1 DNA immunogens. These increases in CTL response were both MHC class I restricted and CD8+ T cell dependent. Together with earlier reports on the utility of co‐immunizing using immunologically important molecules together with DNA immunogens, we demonstrate the potential of this strategy as an important tool for the development of more rationally designed vaccines.


Journal of Clinical Investigation | 1998

CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines.

Jong J. Kim; Liesl K. Nottingham; Jeong I. Sin; Anthony Tsai; Lake Morrison; Jim Oh; Kesen Dang; Yin Hu; Ken Kazahaya; Mosi Bennett; Tzvete Dentchev; Darren M. Wilson; Ara A. Chalian; Jean D. Boyer; Michael G. Agadjanyan; David B. Weiner

The potential roles of CD8(+) T-cell-induced chemokines in the expansion of immune responses were examined using DNA immunogen constructs as model antigens. We coimmunized cDNA expression cassettes encoding the alpha-chemokines IL-8 and SDF-1alpha and the beta-chemokines MIP-1alpha, RANTES, and MCP-1 along with DNA immunogens and analyzed the resulting antigen-specific immune responses. In a manner more similar to the traditional immune modulatory role of CD4(+) T cells via the expression of Th1 or Th2 cytokines, CD8(+) T cells appeared to play an important role in immune expansion and effector function by producing chemokines. For instance, IL-8 was a strong inducer of CD4(+) T cells, indicated by strong T helper proliferative responses as well as an enhancement of antibody responses. MIP-1alpha had a dramatic effect on antibody responses and modulated the shift of immune responses to a Th2-type response. RANTES coimmunization enhanced the levels of antigen-specific Th1 and cytotoxic T lymphocyte (CTL) responses. Among the chemokines examined, MCP-1 was the most potent activator of CD8(+) CTL activity. The enhanced CTL results are supported by the increased expression of Th1 cytokines IFN-gamma and TNF-alpha and the reduction of IgG1/IgG2a ratio. Our results support that CD8(+) T cells may expand both humoral and cellular responses in vivo through the elaboration of specific chemokines at the peripheral site of infection during the effector stage of the immune response.


Emerging Infectious Diseases | 2002

Induction of Inflammation by West Nile virus Capsid through the Caspase-9 Apoptotic Pathway

Yang Js; Mathura P. Ramanathan; Karuppiah Muthumani; Andrew Y. Choo; Jin Sh; Yu Qc; Daniel S. Hwang; Daniel K. Choo; Lee; Kesen Dang; Tang W; Jong J. Kim; David B. Weiner

West Nile virus (WNV) is a member of the Flaviviridae family of vector-borne pathogens. Clinical signs of WNV infection include neurologic symptoms, limb weakness, and encephalitis, which can result in paralysis or death. We report that the WNV-capsid (Cp) by itself induces rapid nuclear condensation and cell death in tissue culture. Apoptosis is induced through the mitochondrial pathway resulting in caspase-9 activation and downstream caspase-3 activation. Capsid gene delivery into the striatum of mouse brain or interskeletal muscle resulted in cell death and inflammation, likely through capsid-induced apoptosis in vivo. These studies demonstrate that the capsid protein of WNV may be responsible for aspects of viral pathogenesis through induction of the apoptotic cascade.


Journal of Interferon and Cytokine Research | 1999

CYTOKINE MOLECULAR ADJUVANTS MODULATE IMMUNE RESPONSES INDUCED BY DNA VACCINE CONSTRUCTS FOR HIV-1 AND SIV

Jong J. Kim; Kenneth A. Simbiri; Jeong I. Sin; Kesen Dang; Jim Oh; Tzvete Dentchev; Daniel J. Lee; Liesl K. Nottingham; Ara A. Chalian; Dan Mccallus; Rick Ciccarelli; Michael G. Agadjanyan; David B. Weiner

DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To further engineer the immune response in vivo, we investigated the induction and regulation of immune responses from the codelivery of Thl cytokines (interleukin-2 [IL-2] and IL-12), Th2 cytokines (IL-4 and IL-10), and granulocyte-macrophage colony-stimulating factor (GM-CSF) genes along with a DNA vaccine construct encoding for simian immunodeficiency virus (SIV) gag/pol proteins. We observed that coinjection with IL-2, IL-4, IL-10, and GM-CSF resulted in increased levels of antigen-specific antibodies. In addition, we found that coinjection with cytokine genes drove the immune responses toward a more Thl or Th2 phenotype. We also observed that coadministration of IL-2, IL-12, and GM-CSF genes resulted in a dramatic enhancement of Th proliferation responses. Moreover, coimmunization with IL-12 genes resulted in a dramatic enhancement of antigen-specific cytotoxic T lymphocyte (CTL) responses. These results support the potential utility of molecular adjuvants in DNA vaccine regimens.


Journal of Medical Primatology | 1996

In vivo protective anti‐HIV immune responses in non‐human primates through DNA immunization

Jean D. Boyer; Bin Wang; Kenneth E. Ugen; Michael G. Agadjanyan; Ali Javadian; Patrice A. Frost; Kesen Dang; Richard Carrano; Richard B. Ciccarelli; Leslie R. Coney; William V. Williams; David B. Weiner

Abstract: An effective immune response involves the specific recognition of and elimination of an infectious organism at multiple levels. In this context DNA immunization can present functional antigenic proteins to the host for recognition by all arms of the immune system, yet provides the opportunity to delete any genes of the infectious organism which code for antigens or pieces of antigens that may have deleterious effects. Our group has developed the use of nucleic acid immunization as a possible method of vaccination against Human immunodeficiency virus type 1 (HIV‐1) [1,2,3,10,11,12]. Sera from non‐human primates immunized with DNA vectors that express the envelope proteins from HIV‐1 contain antibodies specific to the HIV‐1 envelope. These sera also neutralize HIV‐1 infection in vitro and inhibit cell to cell infection in tissue culture. Analysis of cellular responses is equally encouraging. T cell proliferation as well as cytotoxic T cell lysis of relevant env expressing target cells were observed. In addition, evidence that DNA vaccines are capable of inducing a protective response against live virus was demonstrated using a chimeric SIV/HIV (SHIV) challenge in vaccinated cynomologous macaques. We found that nucleic acid vaccination induced protection from challenge in one out of four immunized cynomolgus macaques and viral load was lower in the vaccinated group of animals versus the control group of animals. These data encouraged us to analyze this vaccination technique in chimpanzees, the most closely related animal species to man. We observed the induction of both cellular and humoral immune responses with a DNA vaccine in chimpanzees. These studies demonstrate the utility of this technology to induce relevant immune responses in primates which may ultimately lead to effective vaccines.


Journal of Interferon and Cytokine Research | 2000

Chemokine Gene Adjuvants Can Modulate Immune Responses Induced by DNA Vaccines

Jong J. Kim; Joo-S. Yang; Tzvete Dentchev; Kesen Dang; David B. Weiner

Nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced by the use of molecular adjuvants. For example, coadministration of costimulatory molecules (CD80 and CD86), proinflammatory cytokines (interleukin-1alpha [IL-1alpha], tumor necrosis factor-alpha [TNF-alpha, and TNF-beta), Th1 cytokines (interleukin-2 [IL-2], IL-12, IL-15, and IL-18), Th2 cytokines (IL-4, IL-5, and IL-10), and granulocytes-macrophage colony-stimulating factor (GM-CSF) with DNA vaccine constructs leads to modulation of the magnitude and direction (humoral or cellular) of the immune responses. To further engineer the immune response in vivo, we compared the induction and regulation of immune responses from the codelivery of chemokine (IL-8, interferon-gamma-inducible protein-10 [gammaIP-10], macrophage inhibitory protein-1alpha [MIP-1alpha], and RANTES) genes with codelivery of cytokine genes. We found that as in cytokine gene codelivery, coimmunization with chemokine genes along with DNA immunogen constructs can modulate the direction and magnitude of induced immune responses. We observed that coimmunization with IL-8, gammaIP-10, and MIP-1alpha genes increased the antibody response. We also found that coinjection with IL-8, gammaIP-10, and RANTES resulted in a dramatic enhancement of T helper (Th) proliferation response. Furthermore, among all coinjection combinations, we found that RANTES coinjection caused a high level of cytotoxic lymphocyte (CTL) enhancement. This enhancement of CTL responses observed from the coinjection with RANTES was CD8+ T cell dependent. Together with earlier reports on the utility of coimmunizing immunologically important molecules with DNA immunogens, we demonstrate the potential of this strategy as an important tool for the development of more rationally designed vaccines.


The Journal of Infectious Diseases | 2001

Induction of Potent Th1-Type Immune Responses from a Novel DNA Vaccine for West Nile Virus New York Isolate (WNV-NY1999)

Joo-Sung Yang; J. Joseph Kim; Daniel Hwang; Andrew Y. Choo; Kesen Dang; Henry C. Maguire; Sagar Kudchodkar; Mathura P. Ramanathan; David B. Weiner

West Nile virus (WNV) is a vectorborne pathogen that induces brain inflammation and death. Recently, confirmed cases of infection and deaths have occurred in the United States Mid-Atlantic region. In this study, a DNA vaccine encoding the WNV capsid protein was constructed, and the in vivo immune responses generated were investigated in DNA vaccine-immunized mice. Antigen-specific humoral and cellular immune responses were observed, including a potent induction of antigen-specific Th1 and cytotoxic T lymphocyte responses. Strong induction of Th1-type immune responses included high levels of antigen-specific elaboration of the Th1-type cytokines interferon-gamma and interleukin-2 and beta-chemokines RANTES (regulated upon activation, normal T cell-expressed and secreted) and macrophage inflammatory protein-1beta. Dramatic infiltration of CD4 and CD8 T cells and macrophages also was observed at the muscle injection site. These results support the potential utility of this method as a tool for developing immunization strategies for WNV and other emerging pathogens.


Oncogene | 1998

Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine

Jong J. Kim; Neil N. Trivedi; Darren M. Wilson; Sundarasamy Mahalingam; Lake Morrison; Anthony Tsai; Michael A. Chattergoon; Kesen Dang; Mamata Patel; Lois Ahn; Jean D. Boyer; Ara A. Chalian; Hubert Shoemaker; Thomas Kieber-Emmons; Michael A Agadjanyan; David B. Weiner

Nucleic acid immunization has been investigated as immunotherapy for infectious diseases as well as for treating specific types of cancers. In this approach, nucleic acid expression cassettes are directly inoculated into the host, whose transfected cells become the production source of novel and possibly immunologically foreign protein. We have developed a DNA vaccine construct which encodes for PSA by cloning a cDNA for PSA into a mammalian expression vector under control of a CMV promoter. We investigated and characterized the immunogenicity of PSA DNA expression cassettes in mice. PSA-specific immune responses induced in vivo by immunization were characterized by enzyme-linked immunosorbent assay (ELISA), T helper proliferation cytotoxic T lymphocyte (CTL), and flow cytometry assays. We observed a strong and persistent antibody response against PSA for at least 180 days following immunization. In addition, a significant T helper cell proliferation was observed against PSA protein. Using synthetic peptides spanning the PSA open frame, we identified four dominant T helper epitopes of PSA. Furthermore, immunization with PSA plasmid induced MHC Class I CD8+ T cell-restricted cytotoxic T lymphocyte response against tumor cell targets expressing PSA. The prostate represents a very specific functional organ critical for reproduction but not for the health and survival of the individual. Understanding the immunogenicity of PSA DNA immunization cassettes offers insight into the possible use of this tumor-associated antigen as a target for immunotherapy. These results demonstrate the ability of the genetic PSA to serve as a specific immune target capable of generating both humoral and cellular immune responses in vivo.


Vaccine | 1997

Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site

Bin Wang; Kesen Dang; Michael G. Agadjanyan; Vasantha Srikantans; Feng Li; Kenneth E. Ugen; Jean D. Boyer; Michael Merva; William V. Williams; David B. Weiner

Mucosal immunity is the first defense system in protection against mucosal infection by sexually transmitted diseases and subsequent systemic dissemination of infection. Development of vaccines which can induce protective mucosal immunity would have great promise for preventing sexually transmitted diseases including AIDS. DNA vaccines have recently shown certain advantages over other types of vaccines in safety and elicitation of specific immune responses. We have hypothesized that direct delivery of a DNA plasmid coding the HIV-1 envelope (pcMN160) via mucosal routes will stimulate mucosal immunity against HIV-1. The expression of DNA plasmid inoculated intravaginally was detected in various tissues. Intravaginal inoculation of pcMN160 elicits production of vaginal immunoglobulins which specifically bind to the HIV-1 envelope and neutralize HIV-1 infectivity in vitro. These results indicate the feasibility of inducing mucosal immunity following mucosal inoculation of DNA vaccines. When coupled with systemic inoculation of appropriate DNA constructs, effective mucosal and systemic immunity may be generated.


Oncogene | 2001

Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen.

J. Joseph Kim; Joo-Sung Yang; Liesl K. Nottingham; Waixing Tang; Kesen Dang; Kelledy Manson; Michael S. Wyand; Darren M. Wilson; David B. Weiner

Prostate specific antigen (PSA) is a widely used marker for prostate cancer, which is secreted by normal prostate cells at low levels, but is produced more substantially by cancer cells. We have previously reported on the use of a DNA vaccine construct that encodes for human PSA gene to elicit host immune responses against cells producing PSA. DNA immunization strategy delivers DNA constructs encoding for a specific immunogen into the host, who becomes the in vivo protein source for the production of antigen. This antigen then is the focus of the resulting immune response. In this study, we examine the induction of immune responses and safety profiles in rhesus macaques immunized with DNA-based PSA vaccine. We observed induction of PSA-specific humoral response as well as positive PSA-specific lymphoproliferative (LPA) response in the vaccinated macaques. We also observed that the stimulated T cells from the PSA-immunized rhesus macaques produced higher levels of Th1 type cytokine IFN-γ than the control vector immunized animals. On the other hand, DNA immunization did not result in any adverse effects in the immunized macaques, as indicated by complete blood counts, leukocyte differentials and hepatic and renal chemistries. The macaques appeared healthy, without any physical signs of toxicity throughout the observation period. In addition, we did not observe any adverse effect on the vaccination site. The apparent safety and immunogenecity of DNA immunization in this study suggest that further evaluation of this vaccination strategy is warranted.

Collaboration


Dive into the Kesen Dang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean D. Boyer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jong J. Kim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kenneth E. Ugen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ara A. Chalian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Tsai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Darren M. Wilson

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge