Keshab Gangopadhyay
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keshab Gangopadhyay.
Applied Physics Letters | 2007
Steven Apperson; Rajesh Shende; Senthil Subramanian; Daniel Tappmeyer; Shubhra Gangopadhyay; Zhen Chen; Keshab Gangopadhyay; Paul Redner; S. Nicholich; Deepak Kapoor
Nanothermite composites containing metallic fuel and inorganic oxidizer are gaining importance due to their outstanding combustion characteristics. In this paper, the combustion behaviors of copper oxide/aluminum nanothermites are discussed. CuO nanorods were synthesized using the surfactant-templating method, then mixed or self-assembled with Al nanoparticles. This nanoscale mixing resulted in a large interfacial contact area between fuel and oxidizer. As a result, the reaction of the low density nanothermite composite leads to a fast propagating combustion, generating shock waves with Mach numbers up to 3.
Reports on Progress in Physics | 2013
Rajagopalan Thiruvengadathan; Venumadhav Korampally; Arkasubhra Ghosh; Nripen Chanda; Keshab Gangopadhyay; Shubhra Gangopadhyay
Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle-polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly.
Applied Physics Letters | 2006
Ramasamy Ravindran; Keshab Gangopadhyay; Shubhra Gangopadhyay; N. Mehta; Nivedita Biswas
Multilayer reactive electron-beam evaporation of thin aluminum oxide layers with embedded silver nanoparticles (Ag-nps) has been used to create a dielectric thin film with an enhanced permittivity. The results show a frequency dependent increase of the dielectric constant κ. Overall stack κ of the control sample was found to be 7.7–7.4 in the 1kHz–1MHz range. This is in comparison with κ=16.7–13.0 over the same frequency range in the sample with Ag-nps. Capacitance-voltage and conductance-voltage measurements indicate the presence of charge capture resulting from the Ag-nps. The authors attribute this dielectric constant enhancement to dipole and space charge polarization mechanisms.
Langmuir | 2014
Rajagopalan Thiruvengadathan; Stephen W. Chung; Sagnik Basuray; Balamurugan Balasubramanian; Clay Staley; Keshab Gangopadhyay; Shubhra Gangopadhyay
Exploiting the functionalization chemistry of graphene, long-range electrostatic and short-range covalent interactions were harnessed to produce multifunctional energetic materials through hierarchical self-assembly of nanoscale oxidizer and fuel into highly reactive macrostructures. Specifically, we report a methodology for directing the self-assembly of Al and Bi2O3 nanoparticles on functionalized graphene sheets (FGS) leading to the formation of nanocomposite structures in a colloidal suspension phase that ultimately condense into ultradense macrostructures. The mechanisms driving self-assembly were studied using a host of characterization techniques including zeta potential measurements, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), particle size analysis, micro-Raman spectroscopy, and electron microscopy. A remarkable enhancement in energy release from 739 ± 18 to 1421 ± 12 J/g was experimentally measured for the FGS self-assembled nanocomposites.
Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2014
Roli Kargupta; Sangho Bok; Charles M. Darr; Brett D. Crist; Keshab Gangopadhyay; Shubhra Gangopadhyay; Shramik Sengupta
Bacterial colonization and biofilm formation on an orthopedic implant surface is one of the worst possible outcomes of orthopedic intervention in terms of both patient prognosis and healthcare costs. Making the problem even more vexing is the fact that infections are often caused by events beyond the control of the operating surgeon and may manifest weeks to months after the initial surgery. Herein, we review the costs and consequences of implant infection as well as the methods of prevention and management. In particular, we focus on coatings and other forms of implant surface modification in a manner that imparts some antimicrobial benefit to the implant device. Such coatings can be classified generally based on their mode of action: surface adhesion prevention, bactericidal, antimicrobial-eluting, osseointegration promotion, and combinations of the above. Despite several advances in the efficacy of these antimicrobial methods, a remaining major challenge is ensuring retention of the antimicrobial activity over a period of months to years postoperation, an issue that has so far been inadequately addressed. Finally, we provide an overview of additional figures of merit that will determine whether a given antimicrobial surface modification warrants adoption for clinical use.
Nanotechnology | 2012
K Bhatnagar; Avinash Pathak; Drew Menke; Peter V. Cornish; Keshab Gangopadhyay; Venumadhav Korampally; Shubhra Gangopadhyay
We demonstrate strong electromagnetic field enhancement from nano-gaps embedded in silver gratings for visible wavelengths. These structures fabricated using a store-bought HD-DVD worth
Journal of Micromechanics and Microengineering | 2011
Clay Staley; Christopher J. Morris; Rajagopalan Thiruvengadathan; Steven Apperson; Keshab Gangopadhyay; Shubhra Gangopadhyay
10 and conventional micro-contact printing techniques have shown maximum fluorescence enhancement factors of up to 118 times when compared to a glass substrate under epi-fluorescent conditions. The novel fabrication procedure provides for the development of a cost-effective and facile plasmonic substrate for low-level chemical and biological detection. Electromagnetic field simulations were also performed that reveal the strong field confinement in the nano-gap region embedded in the silver grating, which is attributed to the combined effect of localized as well as propagating surface plasmons.
Journal of Propulsion and Power | 2009
Steven Apperson; Andrey Bezmelnitsyn; Rajagopalan Thiruvengadathan; Keshab Gangopadhyay; Shubhra Gangopadhyay; Wendy Balas; Pe Anderson; Steven Nicolich
We present a micro-manufacturing process for fabricating silicon-based bridge wire micro-chip initiators with the capacity to liberate joules of chemical energy at the expense of micro joules of input electrical energy. The micro-chip initiators are assembled with an open material reservoir utilizing a novel 47 °C melting point solder alloy bonding procedure and integrated with a bismuth oxide–aluminum nanothermite energetic composite. The electro-thermal conversion efficiency of the initiators is enhanced by the use of a nanoporous silicon bed which impedes thermal coupling between the bridge wire and bulk silicon substrate while maintaining the structural integrity of the device. Electrical behaviors of the ignition elements are investigated to extract minimum input power and energy requirements of 382.4 mW and 26.51 µJ, respectively, both in the absence and presence of an injected bismuth oxide–aluminum nanothermite composition. Programmed combustion of bismuth oxide–aluminum nanothermite housed within these initiators is demonstrated with a success rate of 100% over a 30 to 80 µJ range of firing energies and ignition response times of less than 2 µs are achieved in the high input power operation regime. The micro-initiators reported here are intended for use in miniaturized actuation technologies.
Nanotechnology | 2013
Balavinayagam Ramalingam; Somik Mukherjee; Cherian J. Mathai; Keshab Gangopadhyay; Shubhra Gangopadhyay
Nanothermite composites containing metallic fuel and inorganic oxidizer have unique combustion properties that make them potentially useful for microthruster applications. The thrust-generating characteristics of copper oxide/aluminum nanothermites have been investigated. The mixture was tested in various quantities (9―38 mg) by pressing the material over a range of densities. The testing was done in two different types of thrust motors: one with no nozzle and one with a convergent―divergent nozzle. As the packing density was varied, it was found that the material exhibited two distinct impulse characteristics. At low packing pressure, the combustion was in the fast regime, and the resulting thrust forces were ∼75 N with a duration of less than 50 μs full width at half-maximum. At high density, the combustion was relatively slow and the thrust forces were 3―5 N with a duration 1.5―3 ms. In both regimes, the specific impulse generated by the material was 20―25 s. The specific impulse and short thrust duration created by this unique nanothermite material makes it promising for micropropulsion applications, in which space is limited.
Nanotechnology | 2009
Venumadhav Korampally; Minseong Yun; Thiruvengadathan Rajagopalan; Purnendu K. Dasgupta; Keshab Gangopadhyay; Shubhra Gangopadhyay
This paper describes a tilted-target RF magnetron sputter deposition system to grow nanoparticles in a controlled way. With detailed characterization of ultra-high density (up to 1.1 × 10¹³ cm⁻²) and ultra-small size Pt nanoparticles (0.5-2 nm), it explains their growth and crystalline properties on amorphous Al₂O₃ thin films. It is shown that Pt nanoparticle size and number density can be precisely engineered by varying selected experimental parameters such as target angle, sputtering power and time of deposition to control the energy of the metal atoms in the deposition flux. Based on rate equation modelling of nanoparticle growth, three distinct growth regimes, namely nucleation dependent, coalescence dependent and agglomeration dependent regimes, were observed. The correlation between different nanoparticle growth regimes and the consequent crystal structure transformation, non-crystalline clusters → single crystalline nanoparticles → polycrystalline islands, is also discussed.