Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keshab Rijal is active.

Publication


Featured researches published by Keshab Rijal.


Transcription | 2014

Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation

Aneeshkumar G. Arimbasseri; Keshab Rijal; Richard J. Maraia

In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.


Nucleic Acids Research | 2013

RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output

Keshab Rijal; Richard J. Maraia

How eukaryotic RNA polymerases switch from elongation to termination is unknown. Pol III subunits Rpc53 and Rpc37 (C53/37) form a heterodimer homologous to TFIIFβ/α. C53/37 promotes efficient termination and together with C11 also mediates pol III recycling in vitro. We previously developed Schizosaccharomyces pombe strains that report on two pol III termination activities: RNA oligo(U) 3′-end cleavage, and terminator readthrough. We randomly mutagenized C53 and C37 and isolated many C37 mutants with terminator readthrough but no comparable C53 mutants. The majority of C37 mutants have strong phenotypes with up to 40% readthrough and map to a C-terminal tract previously localized near Rpc2p in the pol III active center while a minority represent a distinct class with weaker phenotype, less readthrough and 3′-oligo(U) lengthening. Nascent pre-tRNAs released from a terminator by C37 mutants have shorter 3′-oligo(U) tracts than in cleavage-deficient C11 double mutants indicating RNA 3′-end cleavage during termination. We asked whether termination deficiency affects transcription output in the mutants in vivo both by monitoring intron-containing nascent transcript levels and 14C-uridine incorporation. Surprisingly, multiple termination mutants have no decrease in transcript output relative to controls. These data are discussed in context of current models of pol III transcription.


Nucleic Acids Research | 2011

Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III

James R. Iben; Julie K. Mazeika; Sam Hasson; Keshab Rijal; Aneeshkumar G. Arimbasseri; Amy N. Russo; Richard J. Maraia

RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3′ oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3′–5′ cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA–DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3′ cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.


Chemical Communications | 2014

Amino acid-linked platinum(II) analogues have altered specificity for RNA compared to cisplatin.

Keshab Rijal; Xun Bao; Christine S. Chow

Cisplatin can be modified with various ligands to alter the size and charge distribution of the complex. Several amino acid-linked platinum(II) complexes were synthesized, and a reactivity study with 16S ribosomal RNA was carried out. The amino acid-linked analogues show altered specificity compared to the parental compound cisplatin.


RNA | 2016

Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37

Aneeshkumar G. Arimbasseri; James R. Iben; Fan Yan Wei; Keshab Rijal; Kazuhito Tomizawa; Markus Hafner; Richard J. Maraia

Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.


RNA | 2016

Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA.

Tek N. Lamichhane; Aneeshkumar G. Arimbasseri; Keshab Rijal; James R. Iben; Fan Yan Wei; Kazuhito Tomizawa; Richard J. Maraia

tRNA-isopentenyl transferases (IPTases) are highly conserved enzymes that form isopentenyl-N(6)-A37 (i6A37) on subsets of tRNAs, enhancing their translation activity. Nuclear-encoded IPTases modify select cytosolic (cy-) and mitochondrial (mt-) tRNAs. Mutation in human IPTase, TRIT1, causes disease phenotypes characteristic of mitochondrial translation deficiency due to mt-tRNA dysfunction. Deletion of the Schizosaccharomyces pombe IPTase (tit1-Δ) causes slow growth in glycerol, as well as in rapamycin, an inhibitor of TOR kinase that maintains metabolic homeostasis. Schizosaccharomyces pombe IPTase modifies three different cy-tRNAs(Ser) as well as cy-tRNA(Tyr), cy-tRNA(Trp), and mt-tRNA(Trp). We show that lower ATP levels in tit1-Δ relative to tit1(+) cells are also more decreased by an inhibitor of oxidative phosphorylation, indicative of mitochondrial dysfunction. Here we asked if the tit1-Δ phenotypes are due to hypomodification of cy-tRNA or mt-tRNA. A cytosol-specific IPTase that modifies cy-tRNA, but not mt-tRNA, fully rescues the tit1-Δ phenotypes. Moreover, overexpression of cy-tRNAs also rescues the phenotypes, and cy-tRNA(Tyr) alone substantially does so. Bioinformatics indicate that cy-tRNA(Tyr) is most limiting for codon demand in tit1-Δ cells and that the cytosolic mRNAs most loaded with Tyr codons encode carbon metabolilizing enzymes, many of which are known to localize to mitochondria. Thus, S. pombe i6A37 hypomodification-associated metabolic deficiency results from hypoactivity of cy-tRNA, mostly tRNA(Tyr), and unlike human TRIT1-deficiency does not impair mitochondrial translation due to mt-tRNA hypomodification. We discuss species-specific aspects of i6A37. Specifically relevant to mitochondria, we show that its hypermodified version, ms2i6A37 (2-methylthiolated), which occurs on certain mammalian mt-tRNAs (but not cy-tRNAs), is not found in yeast.


Nature | 2015

Structural biology: A transcriptional specialist resolved

Richard J. Maraia; Keshab Rijal

Three structures of the enzyme RNA polymerase III, which is responsible for the synthesis of abundant short RNAs, reveal the specializations that make it an adept terminator and reinitiator of transcription. See Article p.231 RNA polymerase III (Pol III) transcribes structured small non-coding RNAs such as tRNAs and spliceosomal RNAs. It is the largest eukaryote polymerase, yet the least characterized structurally. Here Christoph Muller and colleagues determine the cryo-electron microscopy structures of budding yeast Pol III and build an atomic-level model of the complete 17-subunit complex, in both unbound and elongating conformations. The results allow a detailed comparison with the Pol I and Pol II enzymes and explain the adaptation of this polymerase towards its specific targets.


PLOS Genetics | 2016

Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo.

Keshab Rijal; Richard J. Maraia

The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.


Biochimica et Biophysica Acta | 2013

Transcription termination by the eukaryotic RNA polymerase III

Aneeshkumar G. Arimbasseri; Keshab Rijal; Richard J. Maraia


Chemical Communications | 2008

A new role for cisplatin: probing ribosomal RNA structure

Keshab Rijal; Christine S. Chow

Collaboration


Dive into the Keshab Rijal's collaboration.

Top Co-Authors

Avatar

Richard J. Maraia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Iben

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy N. Russo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie K. Mazeika

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Markus Hafner

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Sam Hasson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge