Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin A. Pyke is active.

Publication


Featured researches published by Kevin A. Pyke.


The Plant Cell | 1999

Plastid Division and Development

Kevin A. Pyke

Plastids are an important group of plant cellular organelles and comprise one of the primary features that distinguish plant cells from those of other eukaryotes. Plastids are thought to have arisen as a result of an endosymbiotic event in which an early photosynthetic prokaryote invaded a primitive


The Plant Cell | 1999

The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

Stephen J. Streatfield; Andreas P. M. Weber; Elizabeth A. Kinsman; Rainer E. Häusler; Jianming Li; Dusty Post-Beittenmiller; Werner M. Kaiser; Kevin A. Pyke; Ulf-Ingo Flügge; Joanne Chory

The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell–specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity–dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.


The Plant Cell | 2003

ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2.

Stanislav Vitha; John E. Froehlich; Olga Koksharova; Kevin A. Pyke; Harrie van Erp; Katherine W. Osteryoung

Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells contain only one or two grossly enlarged chloroplasts. We show here that arc6 chloroplasts also exhibit abnormal localization of the key plastid division proteins FtsZ1 and FtsZ2. Whereas in wild-type plants, the FtsZ proteins assemble into a ring at the plastid division site, chloroplasts in the arc6 mutant contain numerous short, disorganized FtsZ filament fragments. We identified the mutation in arc6 and show that the ARC6 gene encodes a chloroplast-targeted DnaJ-like protein localized to the plastid envelope membrane. An ARC6–green fluorescent protein fusion protein was localized to a ring at the center of the chloroplasts and rescued the chloroplast division defect in the arc6 mutant. The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria. Based on the FtsZ filament morphology observed in the arc6 mutant and in plants that overexpress ARC6, we hypothesize that ARC6 functions in the assembly and/or stabilization of the plastid-dividing FtsZ ring. We also analyzed FtsZ localization patterns in transgenic plants in which plastid division was blocked by altered expression of the division site–determining factor AtMinD. Our results indicate that MinD and ARC6 act in opposite directions: ARC6 promotes and MinD inhibits FtsZ filament formation in the chloroplast.


Current Biology | 2000

A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus

Kelly S. Colletti; Elizabeth A. R. Tattersall; Kevin A. Pyke; John E. Froelich; Kevin D. Stokes; Katherine W. Osteryoung

BACKGROUND Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.


Planta | 2003

Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato

P. J. Cookson; J. W. Kiano; Cathie A. Shipton; Paul D. Fraser; S. Romer; Wolfgang Schuch; Peter M. Bramley; Kevin A. Pyke

A characteristic trait of the high pigment-1 (hp-1) mutant phenotype of tomato (Lycopersicon esculentum Mill.) is increased pigmentation resulting in darker green leaves and a deeper red fruit. In order to determine the basis for changes in pigmentation in this mutant, cellular and plastid development was analysed during leaf and fruit development, as well as the expression of carotenogenic genes and phytoene synthase enzyme activity. The hp-1 mutation dramatically increases the periclinal elongation of leaf palisade mesophyll cells, which results in increased leaf thickness. In addition, in both palisade and spongy mesophyll cells, the total plan area of chloroplasts per cell is increased compared to the wild type. These two perturbations in leaf development are the primary cause of the darker green hp-1 leaf. In the hp-1 tomato fruit, the total chromoplast area per cell in the pericarp cells of the ripe fruit is also increased. In addition, although expression of phytoene synthase and desaturase is not changed in hp-1 compared to the wild type, the activity of phytoene synthase in ripe fruit is 1.9-fold higher, indicating translational or post-translational control of carotenoid gene expression. The increased plastid compartment size in leaf and fruit cells of hp-1 is novel and provides evidence that the normally tightly controlled relationship between cell expansion and the replication and expansion of plastids can be perturbed and thus could be targeted by genetic manipulation.


Annual Review of Plant Biology | 2014

Division and dynamic morphology of plastids.

Katherine W. Osteryoung; Kevin A. Pyke

Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.


American Journal of Botany | 1997

The genetic control of plastid division in higher plants.

Kevin A. Pyke

The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular controls underlying plastid division are largely unknown. With the isolation of Arabidopsis mutants in which specific aspects of plastid and proplastid division have been disrupted, the potential exists for a detailed knowledge of how plastids divide and what factors control the rate of division in different cell types. It is likely that knowledge of plant homologues of bacterial cell division genes will be essential for understanding this process in full. The processes of plastid division and expansion appear to be mutually independent processes, which are compensatory when either division or expansion are disrupted genetically. The rate of cell expansion appears to be an important factor in initiating plastid division and several systems involving rapid cell expansion show high levels of plastid division activity. In addition, observation of plastids in different cell types in higher plants shows that cell-specific signals are also important in the overall process in determining not only the differentiation pathway of plastids but also the extent of plastid division. It appears likely that with the exploitation of molecular techniques and mutants, a detailed understanding of the molecular basis of plastid division may soon be a reality.


Plant Physiology | 2013

Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits

Yu Pan; Glyn Bradley; Kevin A. Pyke; Graham Ball; C Lu; Rupert G. Fray; Alexandra Marshall; Subhalai Jayasuta; Charles Baxter; Rik van Wijk; Laurie Boyden; Rebecca Cade; Natalie H. Chapman; Paul D. Fraser; Charlie Hodgman; Graham B. Seymour

A likely regulator of tomato ripening is identified from a gene network, its function is validated in transgenic plants, and an orthologous gene is shown to play a similar role in pepper. Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.


Current Opinion in Plant Biology | 1998

Plastid division: evidence for a prokaryotically derived mechanism

Katherine W. Osteryoung; Kevin A. Pyke

Plastid division is a critical process in plant cell biology but it is poorly understood. Recent studies combining mutant analysis, gene cloning, and exploitation of genomic resources have revealed that the molecular machinery associated with plastid division is derived evolutionarily from the bacterial cell division apparatus. Comparison of the two processes provides a basis for identifying new components of the plastid division mechanism, but also serves to highlight the differences, not least of which is the nuclear control of the plastid division process.


Archive | 2007

Plastid biogenesis and differentiation

Kevin A. Pyke

Plastids are crucial to plant functionality and develop from proplastids in meristem cells togenerate different plastid forms in different types of plant cells. In addition to the photosynthesisof leaf mesophyll cell chloroplasts, plastids contribute to storage and pigmentation capacities inmany different specialised cells as well as contributing essential metabolic pathways within the cellin general. Plastids also have the capacity to interconvert between types according to environmentaland molecular signals. Progress in understanding the cell biology and morphological control of differentplastid types is considered in the light of modern imaging techniques, which have revealed new aspectsof plastid morphology. As well as considering molecular aspects of how plastids control their division,this article discusses also how cell-specific differentiation might be controlled and whether mastercontrol genes for plastid biogenesis might be in charge.

Collaboration


Dive into the Kevin A. Pyke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupert G. Fray

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge