Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin A. Thomson is active.

Publication


Featured researches published by Kevin A. Thomson.


AIAA Journal | 2002

Spectrally Resolved Measurement of Flame Radiation to Determine Soot Temperature and Concentration

D. R. Snelling; Kevin A. Thomson; Gregory J. Smallwood; Ömer L. Gülder; E. J. Weckman; R. A. Fraser

A multiwavelength flame emission technique is developed for high spatial resolution determination of soot temperature and soot volume fraction in axisymmetric laminar diffusion flames. Horizontal scans of line-integrated spectra are collected over a spectral range of 500-945 nm. Inversion of these data through one-dimensional tomography using a three-point Abel inversion yields radial distributions of the soot radiation from which temperature profiles are extracted. From an absolute calibration of the flame emission and by use of these temperature data, absorption coefficients are calculated, which are directly proportional to the soot volume fractions. The important optical parameters are discussed. It is shown that a uniform sampling cross section through the flame must be maintained and that variations in sampling area produce inconsistencies between measurements and theory, which cannot be interpreted as spatial averaging of the property field. The variations in cross-sectional sampling area have the largest influence on the measurements at the edges of the flame, where the highest resolution is required. Emission attenuation by soot has been shown to have minor influence on the soot temperature and soot volume fraction for the soot loading of the axisymmetric flame tested. An emission correction scheme is outlined, which could be used for more heavily sooting flames. For a refractive index absorption function E(m) = Im[(m 2 - 1)/(m 2 + 2)] that is independent of wavelength, the soot temperatures and soot volume fractions measured with this technique are in excellent agreement with data obtained by coherent anti-Stokes Raman scattering nitrogen thermometry and two-dimensional soot extinction in the same ethylene coflow diffusion flame. The agreement of the results suggests a limit of the slope of the spectral response of E(m) to be between 0 and 20% over the spectral range examined.


Applied Optics | 1999

Two-dimensional imaging of soot volume fraction in laminar diffusion flames

David R. Snelling; Kevin A. Thomson; Gregory J. Smallwood; Ömer L. Gülder

A technique for acquiring two-dimensional soot-volume-fraction measurements in laminar flames has been demonstrated. The technique provides a map of very low noise concentration over a range of wavelengths (250-1100 nm). A noise level of 0.0007 in extinction and a spatial resolution of 30-40 microm for soot concentration were achieved with an arc lamp source that was filtered to provide greater spatial coherence and a CCD detector. The broadband arc lamp source also allowed us to avoid the added noise resulting from speckle with coherent laser sources. Beam steering, due to refractive-index gradients in the flame, was measured and compared with theoretical predictions. The optical arrangement to minimize the effect of beam steering is described. As a result the beam steering had no effect on the soot measurements in the flames examined. Flame-transmission maps obtained with this system in an ethylene/air laminar diffusion flame are presented. Tomographic analysis from use of an Abel inversion of the line-of-sight data to obtain radial profiles of soot concentration is described.


Applied Optics | 2006

Deconvolution of axisymmetric flame properties using Tikhonov regularization

K. J. Daun; Kevin A. Thomson; Fengshan Liu; Greg Smallwood

We present a method based on Tikhonov regularization for solving one-dimensional inverse tomography problems that arise in combustion applications. In this technique, Tikhonov regularization transforms the ill-conditioned set of equations generated by onion-peeling deconvolution into a well-conditioned set that is less susceptible to measurement errors that arise in experimental settings. The performance of this method is compared to that of onion-peeling and Abel three-point deconvolution by solving for a known field variable distribution from projected data contaminated with an artificially generated error. The results show that Tikhonov deconvolution provides a more accurate field distribution than onion-peeling and Abel three-point deconvolution and is more stable than the other two methods as the distance between projected data points decreases.


Applied Optics | 2008

Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements

Kevin A. Thomson; Matthew R. Johnson; David R. Snelling; Gregory J. Smallwood

A technique of diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) is described and demonstrated that achieves very high levels of sensitivity in transmissivity measurements (optical thicknesses down to 0.001) while effectively mitigating interferences due to beam steering. An optical system is described in which an arc lamp coupled with an integrating sphere is used as a source of diffuse light that is imaged to the center of the particulate laden medium. The center of the medium is then imaged onto a CCD detector with 1:1 magnification. Comparative measurements with collimated 2D-LOSA in nonpremixed flames demonstrate the accuracy and improved optical noise rejection of the technique. Tests in weakly sooting, nonpremixed methane-air flames, and in high pressure methane-air flames, reveal the excellent sensitivity of diffuse 2D-LOSA, which is primarily limited by the shot noise of the lamp and CCD detector.


Aerosol Science and Technology | 2015

Measurement of Aircraft Engine Non-Volatile PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 Campaign

Prem Lobo; Lukas Durdina; Gregory J. Smallwood; Theodor Rindlisbacher; Frithjof Siegerist; Elizabeth Black; Zhenhong Yu; A. A. Mensah; Donald E. Hagen; Richard C. Miake-Lye; Kevin A. Thomson; Benjamin T. Brem; Joel C. Corbin; Manuel Abegglen; B. Sierau; Philip D. Whitefield; Jing Wang

This study reports the first of a kind data on aircraft engine non-volatile particulate matter (nvPM) number- and mass-based emissions using standardized systems. Two compliant sampling and measurement systems operated by Missouri University of Science and Technology (Missouri S&T) and Empa were evaluated during the Aviation - Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 campaign at the SR Technics facilities in Zürich, Switzerland, in November 2012. The Missouri S&T and Empa systems were compared during a series of dedicated engine tests using a CFM56-5B4/2P engine source, and maintenance engine testing using CFM56-7B24/3 and PW4168A engine sources at a range of engine operating conditions. These two compliant systems were found to agree within 6% of each other in terms of nvPM number-based emissions, and within 15% for nvPM mass-based emissions. For the three engine sources studied, at several engine power conditions the mass instruments approached their limit of detection, resulting in high measurement uncertainties. Ancillary instrumentation was used to determine PM size distributions, chemical composition, and effective density from mass-mobility experiments. Particle geometric mean mobility diameter ranged 20–45 nm, and geometric standard deviation varied from 1.55 to 1.9 for the three engine types studied. The fraction of PM organic content measured in the emissions from the CFM56-5B4/2P engine was ∼4% while the size-dependent particle effective density was parameterized with a mass-mobility exponent of 2.57 and a pre-factor of 0.606. Results of this study will contribute to the development of the new nvPM emissions certification standard and emissions inventories from commercial aviation operations.


Environmental Science & Technology | 2011

Quantitative Field Measurement of Soot Emission from a Large Gas Flare Using Sky-LOSA

Matthew R. Johnson; Robin W. Devillers; Kevin A. Thomson

Particulate matter emissions from unconfined sources such as gas flares are extremely difficult to quantify, yet there is a significant need for this measurement capability due to the prevalence and magnitude of gas flaring worldwide. Current estimates for soot emissions from flares are rarely, if ever, based on any form of direct data. A newly developed method to quantify the mass emission rate of soot from flares is demonstrated on a large-scale flare at a gas plant in Uzbekistan, in what is believed to be the first in situ quantitative measurement of soot emission rate from a gas flare under field conditions. The technique, named sky-LOSA, is based on line-of-sight attenuation of skylight through a flare plume coupled with image correlation velocimetry. Monochromatic plume transmissivities were measured using a thermoelectrically cooled scientific-grade CCD camera. Plume velocities were separately calculated using image correlation velocimetry on high-speed movie data. For the flare considered, the mean soot emission rate was determined to be 2.0 g/s at a calculated uncertainty of 33%. This emission rate is approximately equivalent to that of 500 buses driving continuously and equates to approximately 275 trillion particles per second. The environmental impact of large, visibly sooting flares can be quite significant.


Applied Optics | 2012

Application of the Hough transform for the automatic determination of soot aggregate morphology.

Igor Grishin; Kevin A. Thomson; Francesca Migliorini; James J. Sloan

We report a new method for automated identification and measurement of primary particles within soot aggregates as well as the sizes of the aggregates and discuss its application to high-resolution transmission electron microscope (TEM) images of the aggregates. The image processing algorithm is based on an optimized Hough transform, applied to the external border of the aggregate. This achieves a significant data reduction by decomposing the particle border into fragments, which are assumed to be spheres in the present application, consistent with the known morphology of soot aggregates. Unlike traditional techniques, which are ultimately reliant on manual (human) measurement of a small sample of primary particles from a subset of aggregates, this method gives a direct measurement of the sizes of the aggregates and the size distributions of the primary particles of which they are composed. The current version of the algorithm allows processing of high-resolution TEM images by a conventional laptop computer at a rate of 1-2 ms per aggregate. The results were validated by comparison with manual image processing, and excellent agreement was found.


Journal of Propulsion and Power | 2015

Effective density and mass-mobility exponent of aircraft turbine particulate matter

Tyler J. Johnson; Jason S. Olfert; John P.R. Symonds; Mark P. Johnson; Theo Rindlisbacher; Jacob Swanson; Adam M. Boies; Kevin A. Thomson; Greg Smallwood; David Walters; Yura Alexander Sevcenco; Andrew Philip Crayford; Ramin Dastanpour; Steven N. Rogak; Lukas Durdina; Yeon Kyoung Bahk; Benjamin T. Brem; Jing Wang

A centrifugal particle mass analyzer and a modified differential mobility spectrometer were used to measure the mass and mobility of particulate matter emitted by CFM56-5B4/2P, CFM56-7B26/3, and PW4000-100 gas turbine engine sources. The mass-mobility exponent of the particulate matter from the CFM56-5B4/2P engine ranged from 2.68 to 2.82, whereas the effective particle densities varied from 600 to 1250  kg/m3, depending on the static engine thrust and sampling methodology used. The effective particle densities from the CFM56-7B26/3 and PW4000-100 engines also fell within this range. The sample was conditioned with or without a catalytic stripper and with or without dilution, which caused the effective density to change, indicating the presence of condensed semivolatile material on the particles. Variability of the determined effective densities across different engine thrusts, based on the scattering about the line of best fit, was lowest for the diluted samples and highest for the undiluted sample without a catalytic stripper. This variability indicates that the relative amount of semivolatile material produced was engine thrust dependent. It was found that the nonvolatile particulate matter, effective particle density (in kilograms per cubic meter) of the CFM56-5B4/2P engine at relative thrusts below 30% could be approximated using the particle mobility diameter (dme in meters) with 11.92d(2.76−3)me.


Aerosol Science and Technology | 2013

A Generalized Sky-LOSA Method to Quantify Soot/Black Carbon Emission Rates in Atmospheric Plumes of Gas Flares

Matthew R. Johnson; Robin W. Devillers; Kevin A. Thomson

A new generalized theory governing sky-LOSA measurements (line-of-sight attenuation measurements of sky-light) of soot mass flux in atmospheric plumes has been developed which enables accurate measurements in the presence of in-scattered light from the sky and sun. The new approach is quantitatively tested using field measurement data collected for a gas flare at a turbocompressor station in Mexico. Although the soot plume of the tested flare was on the threshold of visible to the naked eye, the sensitivity of the current hardware was more than sufficient to resolve the soot mass emission rate of 0.067 g/s, with a quantified 95% confidence interval of 0.050 to 0.090 g/s. Results of a Monte Carlo simulation showed that soot optical property uncertainty was the major contributor to the overall measurement uncertainty. By contrast, correction of in-scattering via the generalized theory was a comparatively minor contributor, and was specifically insensitive to assumptions about the sky polarization state and intensity distribution. Given the prevalence of flaring and its implication as a potentially critical source of black carbon emissions, sky-LOSA is an essential new technology to directly quantify the impact of these globally distributed sources, for which comparable technologies do not exist. Copyright 2013 American Association for Aerosol Research


Aerosol Science and Technology | 2016

Methodology for quantifying the volatile mixing state of an aerosol

Matthew Dickau; Jason S. Olfert; Marc E.J. Stettler; Adam M. Boies; Ali Momenimovahed; Kevin A. Thomson; Greg Smallwood; Mark P. Johnson

ABSTRACT Mixing state refers to the relative proportions of chemical species in an aerosol, and the way these species are combined; either as a population where each particle consists of a single species (‘externally mixed’) or where all particles individually consist of two or more species (‘internally mixed’) or the case where some particles are pure and some particles consist of multiple species. The mixing state affects optical and hygroscopic properties, and quantifying it is therefore important for studying an aerosols climate impact. In this article, we describe a method to quantify the volatile mixing state of an aerosol using a differential mobility analyzer, centrifugal particle mass analyzer, catalytic denuder, and condensation particle counter by measuring the mass distributions of the volatile and non-volatile components of an aerosol and determining how the material is mixed within and between particles as a function of mobility diameter. The method is demonstrated using two aerosol samples from a miniCAST soot generator, one with a high elemental carbon (EC) content, and one with a high organic carbon (OC) content. The measurements are presented in terms of the mass distribution of the volatile and non-volatile material, as well as measures of diversity and mixing state parameter. It was found that the high-EC soot nearly consisted of only pure particles where 86% of the total mass was non-volatile. The high-OC soot consisted of either pure volatile particles or particles that contained a mixture of volatile and non-volatile material where 8% of the total mass was pure volatile particles and 70% was non-volatile material (with the remaining 22% being volatile material condensed on non-volatile particles).

Collaboration


Dive into the Kevin A. Thomson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengshan Liu

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Snelling

National Research Council

View shared research outputs
Top Co-Authors

Avatar

K. J. Daun

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Smallwood

National Research Council

View shared research outputs
Top Co-Authors

Avatar

F. Liu

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge