Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin C. Cossel is active.

Publication


Featured researches published by Kevin C. Cossel.


Optics Letters | 2009

Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm

Florian Adler; Kevin C. Cossel; Michael J. Thorpe; Ingmar Hartl; Martin E. Fermann; J. Ye

We present a high-power optical-parametric-oscillator (OPO) based frequency comb in the mid-IR wavelength region. The system employs periodically poled lithium niobate and is singly resonant for the signal. It is synchronously pumped by a 10 W femtosecond Yb:fiber laser centered at 1.07 microm. The idler (signal) wavelength can be continuously tuned from 2.8 to 4.8 microm (1.76 to 1.37 microm) with a simultaneous bandwidth as high as 0.3 microm and a maximum average idler output power of 1.50 W. We also demonstrate the performance of the stabilized comb by recording the heterodyne beat with a narrow-linewidth diode laser. This OPO is an ideal source for frequency comb spectroscopy in the mid-IR.


Optics Express | 2010

Mid-infrared Fourier transform spectroscopy with a broadband frequency comb

Florian Adler; Piotr Maslowski; Aleksandra Foltynowicz; Kevin C. Cossel; Travis C. Briles; Ingmar Hartl; J. Ye

Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared spectrometer which is ready to replace traditional Fourier transform spectrometers for many applications in trace gas detection, atmospheric science, and medical diagnostics.We present a first implementation of optical-frequency-comb-based rapid trace gas detection in the molecular fingerprint region in the mid-infrared. Near-real-time acquisition of broadband absorption spectra with 0.0056 cm(-1) maximum resolution is demonstrated using a frequency comb Fourier transform spectrometer which operates in the 2100-to-3700-cm(-1) spectral region. We achieve part-per-billion detection limits in 30 seconds of integration time for several important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features.


Reviews in Analytical Chemistry | 2010

Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications

Florian Adler; Michael J. Thorpe; Kevin C. Cossel; J. Ye

Cavity-enhanced direct frequency comb spectroscopy combines broad bandwidth, high spectral resolution, and ultrahigh detection sensitivity in one experimental platform based on an optical frequency comb efficiently coupled to a high-finesse cavity. The effective interaction length between light and matter is increased by the cavity, massively enhancing the sensitivity for measurement of optical losses. Individual comb components act as independent detection channels across a broad spectral window, providing rapid parallel processing. In this review we discuss the principles, the technology, and the first applications that demonstrate the enormous potential of this spectroscopic method. In particular, we describe various frequency comb sources, techniques for efficient coupling between comb and cavity, and detection schemes that utilize the techniques high-resolution, wide-bandwidth, and fast data-acquisition capabilities. We discuss a range of applications, including breath analysis for medical diagnosis, trace-impurity detection in specialty gases, and characterization of a supersonic jet of cold molecules.


Optics Letters | 2012

Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection

Lora Nugent-Glandorf; Tyler W. Neely; Florian Adler; Adam J. Fleisher; Kevin C. Cossel; Bryce Bjork; Tim Dinneen; J. Ye; Scott A. Diddams

We present and characterize a two-dimensional (2D) imaging spectrometer based on a virtually imaged phased array (VIPA) disperser for rapid, high-resolution molecular detection using mid-infrared (MIR) frequency combs at 3.1 and 3.8 μm. We demonstrate detection of CH4 at 3.1 μm with >3750 resolution elements spanning >80 nm with ~600 MHz resolution in a <10 μs acquisition time. In addition to broadband detection, we also demonstrate rapid, time-resolved single-image detection by capturing dynamic concentration changes of CH4 at a rate of ~375 frames per second. Changes in absorption above the noise floor of 5×10(-4) are readily detected on the millisecond time scale, leading to important future applications such as real-time monitoring of trace gas concentrations and detection of reactive intermediates.


Journal of Physical Chemistry Letters | 2014

Mid-Infrared Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals

Adam J. Fleisher; Bryce Bjork; Thinh Bui; Kevin C. Cossel; Mitchio Okumura; J. Ye

We demonstrate time-resolved frequency comb spectroscopy (TRFCS), a new broadband absorption spectroscopy technique for the study of trace free radicals on the microsecond timescale. We apply TRFCS to study the time-resolved, mid-infrared absorption of the deuterated hydroxyformyl radical trans-DOCO, an important short-lived intermediate along the OD + CO reaction path. Directly after photolysis of the chemical precursor acrylic acid-d1, we measure absolute trans-DOCO product concentrations with a sensitivity of 5 × 10(10) cm(-3) and observe its subsequent loss with a time resolution of 25 μs. The multiplexed nature of TRFCS allows us to detect simultaneously the time-dependent concentration of several other photoproducts and thus unravel primary and secondary chemical reaction pathways.


Science | 2013

Precision Spectroscopy of Polarized Molecules in an Ion Trap

Huanqian Loh; Kevin C. Cossel; Matt Grau; Kang-Kuen Ni; Edmund R. Meyer; John L. Bohn; J. Ye; Eric A. Cornell

Toward a New Physics The search for physics beyond the Standard Model is carried out at accelerator facilities such as the Large Hadron Collider but also on a smaller scale in atomic and molecular physics experiments. One of the signatures of this “new physics” would be a nonvanishing electric dipole moment of the electron, but experiments designed to look for it need to distinguish between the signal and many potential artifacts. Loh et al. (p. 1220) introduce a method based on the spectroscopy of polarized molecular ions that avoids some of the sources of systematic error. A method to measure the electric dipole moment of the electron is demonstrated by using polarized trapped molecular ions. Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in 180Hf19F+ with a coherence time of 100 milliseconds. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.


Faraday Discussions | 2011

Optical frequency comb spectroscopy.

Aleksandra Foltynowicz; Piotr Maslowski; Ticijana Ban; Florian Adler; Kevin C. Cossel; Travis C. Briles; J. Ye

Optical frequency combs offer enormous potential in the detection and control of atoms and molecules by combining their vast spectral coverage with the extremely high spectral resolution of each individual comb component. Sensitive and multiplexed trace gas detection via cavity-enhanced direct frequency comb spectroscopy has been demonstrated for various molecules and applications; however, previous demonstrations have been confined to the visible and near-infrared wavelength range. Future spectroscopic capabilities are created by developing comb sources and spectrometers for the deep ultraviolet and mid-infrared spectral regions. Here we present a broadband high resolution mid-infrared frequency comb-based Fourier transform spectrometer operating in the important molecular fingerprint spectral region of 2100-3600 cm(-1) (2.8-4.8 microm). The spectrometer, employing a multipass cell, allows simultaneous acquisition of broadband, high resolution spectra (down to 0.0035 cm(-1) of many molecular species at concentrations in the part-per-billion range in less than 1 min acquisition time. The system enables precise measurements of concentration even in gas mixtures that exhibit continuous absorption bands. The current sensitivity, 2 x 10(-8) cm(-1) Hz-1/2 per spectral element, is expected to improve by two orders of magnitude with an external enhancement cavity. We have demonstrated this sensitivity increase by combining cavity-enhanced frequency comb spectroscopy with a scanning Fourier transform spectrometer in the near-infrared region and achieving a sensitivity of 4.7 x 10(-10) cm(-1) Hz(-1/2). A cavity-enhanced mid-infrared comb spectrometer will provide a near real-time, high sensitivity, high resolution, precisely frequency calibrated, broad bandwidth system for many applications.


Chemical Physics Letters | 2012

Broadband velocity modulation spectroscopy of HfF + : towards a measurement of the electron electric dipole moment

Kevin C. Cossel; Daniel Gresh; Laura C. Sinclair; Tyler Coffey; L. V. Skripnikov; Alexander Petrov; N. S. Mosyagin; Anatoly V. Titov; Robert W. Field; Edmund R. Meyer; Eric A. Cornell; J. Ye

Precision spectroscopy of trapped HfF + will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm −1 using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states inclu ding those that will be necessary for state preparation and r eadout in an actual eEDM experiment.


Journal of The Optical Society of America B-optical Physics | 2017

Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited]

Kevin C. Cossel; Eleanor M. Waxman; Ian A. Finneran; Geoffrey A. Blake; J. Ye; Nathan R. Newbury

Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy.


Physical Review Letters | 2011

Frequency Comb Velocity-Modulation Spectroscopy

Laura C. Sinclair; Kevin C. Cossel; Tyler Coffey; J. Ye; Eric A. Cornell

We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻⁷ recorded over 1500 simultaneous channels spanning 150  cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001  cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.

Collaboration


Dive into the Kevin C. Cossel's collaboration.

Top Co-Authors

Avatar

J. Ye

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Nathan R. Newbury

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Ian R. Coddington

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Eric A. Cornell

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Fabrizio R. Giorgetta

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Gar-Wing Truong

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Eleanor M. Waxman

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Florian Adler

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

William C. Swann

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Esther Baumann

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge