Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin C. Kobylinski is active.

Publication


Featured researches published by Kevin C. Kobylinski.


Emerging Infectious Diseases | 2011

Probable Non–Vector-borne Transmission of Zika Virus, Colorado, USA

Brian D. Foy; Kevin C. Kobylinski; Joy L. Chilson Foy; Bradley J. Blitvich; Amelia Travassos da Rosa; Andrew D. Haddow; Robert S. Lanciotti; Robert B. Tesh

Clinical and serologic evidence indicate that 2 American scientists contracted Zika virus infections while working in Senegal in 2008. One of the scientists transmitted this arbovirus to his wife after his return home. Direct contact is implicated as the transmission route, most likely as a sexually transmitted infection.


Malaria Journal | 2013

Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination

Carlos Chaccour; Kevin C. Kobylinski; Quique Bassat; Teun Bousema; Chris Drakeley; Pedro L. Alonso; Brian D. Foy

BackgroundThe heterogeneity of malaria transmission makes widespread elimination a difficult goal to achieve. Most of the current vector control measures insufficiently target outdoor transmission. Also, insecticide resistance threatens to diminish the efficacy of the most prevalent measures, indoor residual spray and insecticide treated nets. Innovative approaches are needed. The use of endectocides, such as ivermectin, could be an important new addition to the toolbox of anti-malarial measures. Ivermectin effectively targets outdoor transmission, has a novel mechanism of action that could circumvent resistance and might be distributed over the channels already in place for the control of onchocerciasis and lymphatic filariasis.MethodsThe previous works involving ivermectin and Anopheles vectors are reviewed and summarized. A review of ivermectin’s safety profile is also provided. Finally three definitive clinical trials are described in detail and proposed as the evidence needed for implementation. Several smaller and specific supportive studies are also proposed.ConclusionsThe use of ivermectin solves many challenges identified for future vector control strategies. It is an effective and safe endectocide that was approved for human use more than 25 years ago. Recent studies suggest it might become an effective and complementary strategy in malaria elimination and eradication efforts; however, intensive research will be needed to make this a reality.


Acta Tropica | 2010

The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors.

Kevin C. Kobylinski; Kelsey M. Deus; Matthew P. Butters; Tan Hongyu; Meg Gray; Ines Marques da Silva; Massamba Sylla; Brian D. Foy

In the Tropics, there is substantial temporal and spatial overlap of diseases propagated by anthropophilic mosquito vectors (such as malaria and dengue) and human helminth diseases (such as onchocerciasis and lymphatic filariasis) that are treated though mass drug administrations (MDA). This overlap will result in mosquito vectors imbibing significant quantities of these drugs when they blood feed on humans. Since many anthelmintic drugs have broad anti-invertebrate effects, the possibility of combined helminth control and mosquito-borne disease control through MDA is apparent. It has been previously shown that ivermectin can reduce mosquito survivorship when administered in a blood meal, but more detailed examinations are needed if MDA is to ever be developed into a tool for malaria or dengue control. We examined concentrations of drugs that follow human pharmacokinetics after MDA and that matched with mosquito feeding times, for effects against the anthropophilic mosquito vectors Anopheles gambiae s.s. and Aedes aegypti. Ivermectin was the only human-approved MDA drug we tested that affected mosquito survivorship, and only An. gambiae s.s. were affected at concentrations respecting human pharmacokinetics at indicated doses. Ivermectin also delayed An. gambiae s.s. re-feeding frequency and defecation rates, and two successive ivermectin-spiked blood meals following human pharmacokinetic concentrations compounded mortality effects compared to controls. These findings suggest that ivermectin MDA in Africa may be used to decrease malaria transmission if MDAs were administered more frequently. Such a strategy would broaden the current scope of polyparasitism control already afforded by MDAs, and which is needed in many African villages simultaneously burdened by many parasitic diseases.


Malaria Journal | 2010

Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors

Massamba Sylla; Kevin C. Kobylinski; Meg Gray; Phillip L. Chapman; Moussa Sarr; Jason L. Rasgon; Brian D. Foy

BackgroundIn south-eastern Senegal, malaria and onchocerciasis are co-endemic. Onchocerciasis in this region has been controlled by once or twice yearly mass drug administration (MDA) with ivermectin (IVM) for over fifteen years. Since laboratory-raised Anopheles gambiae s.s. are susceptible to ivermectin at concentrations found in human blood post-ingestion of IVM, it is plausible that a similar effect could be quantified in the field, and that IVM might have benefits as a malaria control tool.MethodsIn 2008 and 2009, wild-caught blood fed An. gambiae s.l. mosquitoes were collected from huts of three pairs of Senegalese villages before and after IVM MDAs. Mosquitoes were held in an insectary to assess their survival rate, subsequently identified to species, and their blood meals were identified. Differences in mosquito survival were statistically analysed using a Glimmix model. Lastly, changes in the daily probability of mosquito survivorship surrounding IVM MDAs were calculated, and these data were inserted into a previously developed, mosquito age-structured model of malaria transmission.ResultsAnopheles gambiae s.s. (P < 0.0001) and Anopheles arabiensis (P = 0.0191) from the treated villages had significantly reduced survival compared to those from control villages. Furthermore, An gambiae s.s. caught 1-6 days after MDA in treated villages had significantly reduced survival compared to control village collections (P = 0.0003), as well as those caught pre-MDA (P < 0.0001) and >7 days post-MDA (P < 0.0001). The daily probability of mosquito survival dropped >10% for the six days following MDA. The mosquito age-structured model of malaria transmission demonstrated that a single IVM MDA would reduce malaria transmission (Ro) below baseline for at least eleven days, and that repeated IVM MDAs would result in a sustained reduction in malaria Ro.ConclusionsIvermectin MDA significantly reduced the survivorship of An. gambiae s.s. for six days past the date of the MDA, which is sufficient to temporarily reduce malaria transmission. Repeated IVM MDAs could be a novel and integrative malaria control tool in areas with seasonal transmission, and which would have simultaneous impacts on neglected tropical diseases in the same villages.


American Journal of Tropical Medicine and Hygiene | 2011

Ivermectin Mass Drug Administration to Humans Disrupts Malaria Parasite Transmission in Senegalese Villages

Kevin C. Kobylinski; Massamba Sylla; Phillip L. Chapman; Moussa Sarr; Brian D. Foy

Ivermectin mass drug administration (MDA) to humans is used to control onchocerciasis and lymphatic filariasis. Recent field studies have shown an added killing effect of ivermectin MDA against malaria vectors. We report that ivermectin MDA reduced the proportion of Plasmodium falciparum infectious Anopheles gambiae sensu stricto (s.s.) in treated villages in southeastern Senegal. Ivermectin MDA is a different delivery method and has a different mode of action from current malaria control agents. It could be a powerful and synergistic new tool to reduce malaria transmission in regions with epidemic or seasonal malaria transmission, and the prevalence and intensity of neglected tropical diseases.


American Journal of Tropical Medicine and Hygiene | 2012

The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

Saul Lozano-Fuentes; Mary H. Hayden; Carlos Welsh-Rodriguez; Carolina Ochoa-Martinez; Berenice Tapia-Santos; Kevin C. Kobylinski; Christopher K. Uejio; Emily Zielinski-Gutierrez; Luca Delle Monache; Andrew J. Monaghan; Daniel F. Steinhoff; Lars Eisen

México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer.


Trends in Parasitology | 2011

Endectocides for malaria control

Brian D. Foy; Kevin C. Kobylinski; Ines Marques da Silva; Jason L. Rasgon; Massamba Sylla

Systemic endectocidal drugs, used to control nematodes in humans and other vertebrates, can be toxic to Anopheles spp. mosquitoes when they take a blood meal from a host that has recently received one of these drugs. Recent laboratory and field studies have highlighted the potential of ivermectin to control malaria parasite transmission if this drug is distributed strategically and more often. There are important theoretical benefits to this strategy, as well as caveats. A better understanding of drug effects against vectors and malaria ecologies are needed. In the near future, ivermectin and other endectocides could serve as potent and novel malaria transmission control tools that are directly linked to the control of neglected tropical diseases in the same communities.


Clinical Infectious Diseases | 2015

Efficacy and Safety of the Mosquitocidal Drug Ivermectin to Prevent Malaria Transmission After Treatment: A Double-Blind, Randomized, Clinical Trial

André Lin Ouédraogo; Guido J. H. Bastiaens; Alfred B. Tiono; Wamdaogo M. Guelbeogo; Kevin C. Kobylinski; Alphonse Ouédraogo; Aïssata Barry; Edith C. Bougouma; Issa Nebie; Maurice San Ouattara; Kjerstin Lanke; Lawrence Fleckenstein; Robert W. Sauerwein; Hannah C. Slater; Thomas S. Churcher; Sodiomon B. Sirima; Chris Drakeley; Teun Bousema

BACKGROUND Artemisinin combination therapy effectively clears asexual malaria parasites and immature gametocytes but does not prevent posttreatment malaria transmission. Ivermectin (IVM) may reduce malaria transmission by killing mosquitoes that take blood meals from IVM-treated humans. METHODS In this double-blind, placebo-controlled trial, 120 asymptomatic Plasmodium falciparum parasite carriers were randomized to receive artemether-lumefantrine (AL) plus placebo or AL plus a single or repeated dose (200 µg/kg) of ivermectin (AL-IVM1 and AL-IVM2, respectively). Mosquito membrane feeding was performed 1, 3, and 7 days after initiation of treatment to determine Anopheles gambiae and Anopheles funestus survival and infection rates. RESULTS The AL-IVM combination was well tolerated. IVM resulted in a 4- to 7-fold increased mortality in mosquitoes feeding 1 day after IVM (P < .001). Day 7 IVM plasma levels were positively associated with body mass index (r = 0.57, P < .001) and were higher in female participants (P = .003), for whom An. gambiae mosquito mortality was increased until 7 days after a single dose of IVM (hazard rate ratio, 1.34 [95% confidence interval, 1.07-1.69]; P = .012). Although we found no evidence that IVM reduced Plasmodium infection rates among surviving mosquitoes, the mosquitocidal effect of AL-IVM1 and AL-IVM2 resulted in 27% and 35% reductions, respectively, in estimated malaria transmission potential during the first week after initiation of treatment. CONCLUSIONS We conclude that IVM can be safely given in combination with AL and can reduce the likelihood of malaria transmission by reducing the life span of feeding mosquitoes. CLINICAL TRIALS REGISTRATION NCT0160325.


Malaria Journal | 2012

Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae

Kevin C. Kobylinski; Brian D. Foy; Jason H. Richardson

BackgroundWhen ingested in a blood meal, ivermectin has been shown to reduce the survivorship of Anopheles gambiae in the laboratory and field. Furthermore, ivermectin mass drug administrations in Senegal have been shown to reduce the proportion of Plasmodium falciparum-sporozoite-containing An. gambiae. This study addresses whether ivermectin inhibits sporogony of P. falciparum in An. gambiae.MethodsAnophele gambiae s.s. G3 strain were fed two concentrations of ivermectin (LC25 and LC5) along with P. falciparum NF54 in human blood meals at staggered intervals. Mosquitoes ingested ivermectin concurrent with parasites (DPI 0), or at three (DPI 3), six (DPI 6), and nine (DPI 9) days post parasite ingestion, or three days prior (DPI −3) to parasite ingestion. Mosquitoes were dissected at seven, twelve or fourteen days post parasite ingestion and either oocyst or sporozoite prevalence was recorded. To determine if P. falciparum sporozoite-containing An. gambiae were more susceptible to ivermectin than uninfected controls, survivorship was recorded for mosquitoes which ingested P. falciparum or control blood meal on DPI 0 and then a second blood meal containing ivermectin (LC25) on DPI 14.ResultsIvermectin (LC25) co-ingested (DPI 0) with parasites reduced the proportion of An. gambiae that developed oocysts (χ2 = 15.4842, P = 0.0002) and sporozoites (χ2 = 19.9643, P < 0.0001). Ivermectin (LC25) ingested DPI 6 (χ2 = 8.5103, P = 0.0044) and 9 (χ2 = 14.7998, P < 0.0001) reduced the proportion of An. gambiae that developed sporozoites but not when ingested DPI 3 (χ2 = 0.0113, P = 1). Ivermectin (LC5) co-ingested (DPI 0) with parasites did not reduce the proportion of An. gambiae that developed oocysts (χ2 = 4.2518, P = 0.0577) or sporozoites (χ2 = 2.3636, P = 0.1540), however, when ingested DPI −3 the proportion of An. gambiae that developed sporozoites was reduced (χ2 = 8.4806, P = 0.0047). Plasmodium falciparum infection significantly reduced the survivorship of An. gambiae that ingested ivermectin (LC25) on DPI 14 compared to control mosquitoes that ingested a primary blood meal without parasites (χ2 = 4.97, P = 0.0257).ConclusionsIvermectin at sub-lethal concentrations inhibits the sporogony of P. falciparum in An. gambiae. These findings support the utility of ivermectin for P. falciparum transmission control.


Malaria Journal | 2014

Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments

Haoues Alout; Benjamin J. Krajacich; Jacob I. Meyers; Nathan D. Grubaugh; Doug E. Brackney; Kevin C. Kobylinski; Joseph W. Diclaro; Fatorma K. Bolay; Lawrence S. Fakoli; Abdoulaye Diabaté; Roch K. Dabiré; Roland W Bougma; Brian D. Foy

BackgroundMass drug administration (MDA) of ivermectin to humans for control and elimination of filarial parasites can kill biting malaria vectors and lead to Plasmodium transmission reduction. This study examines the degree and duration of mosquitocidal effects resulting from single MDAs conducted in three different West African countries, and the subsequent reductions in parity and Plasmodium sporozoite rates.MethodsIndoor-resting, blood-fed and outdoor host-seeking Anopheles spp. were captured on days surrounding MDAs from 2008–2013 in Senegalese, Liberian and Burkinabé villages. Mortality was assessed on a portion of the indoor collection, and parity status was determined on host-seeking mosquitoes. The effect of MDA was then analysed against the time relative to the MDA, the distributed drugs and environmental variables.ResultsAnopheles gambiae survivorship was reduced by 33.9% for one week following MDA and parity rates were significantly reduced for more than two weeks after the MDAs. Sporozoite rates were significantly reduced by >77% for two weeks following the MDAs in treatment villages despite occurring in the middle of intense transmission seasons. These observed effects were consistent across three different West African transmission dynamics.ConclusionsThese data provide a comprehensive and crucial evidence base for the significant reduction in malaria transmission following single ivermectin MDAs across diverse field sites. Despite the limited duration of transmission reduction, these results support the hypothesis that repeated MDAs with optimal timing could help sustainably control malaria as well as filarial transmission.

Collaboration


Dive into the Kevin C. Kobylinski's collaboration.

Top Co-Authors

Avatar

Brian D. Foy

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Massamba Sylla

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meg Gray

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gissella M. Vásquez

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason H. Richardson

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge