Kevin Cariou
Institut de Chimie des Substances Naturelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Cariou.
Journal of the American Chemical Society | 2009
Gilles Lemière; Vincent Gandon; Kevin Cariou; Alexandra Hours; Takahide Fukuyama; Anne-Lise Dhimane; Louis Fensterbank; Max Malacria
Cyclopentenylidene gold complexes can easily be formed from vinyl allenes through a Nazarov-like mechanism. Such carbenes may transform in four different ways into polycyclic frameworks: electrophilic cyclopropanation, C-H insertion, C-C migration, or proton shift. We have studied the selectivity of these different pathways and used our findings for the expedient preparation of valuable complex molecules. An application to the total synthesis of a natural product, Delta(9(12))-capnellene, is presented. DFT computations were carried out to shed light on the mechanisms.
Journal of the American Chemical Society | 2009
John A. Malona; Kevin Cariou; Alison J. Frontier
The total syntheses of aglafolin, rocagloic acid, and rocaglamide using Nazarov cyclization are described. Generation of the necessary oxyallyl cation intermediate was accomplished via peracid oxidation of an allenol ether to generate an unusual oxycarbenium ion species that undergoes cyclization. The synthesis is efficient, highly diastereoselective, and strategically distinct from previous syntheses of rocaglamide.
Journal of Organic Chemistry | 2012
John A. Malona; Kevin Cariou; William T. Iii Spencer; Alison J. Frontier
This article describes the evolution of a Nazarov cyclization-based synthetic strategy targeting the anticancer, antiinflammatory, and insecticidal natural product (±)-rocaglamide. Initial pursuit of a polarized heteroaromatic Nazarov cyclization to construct the congested cyclopentane core revealed an unanticipated electronic bias in the pentadienyl cation. This reactivity was harnessed in a successful second-generation approach using an oxidation-initiated Nazarov cyclization of a heteroaryl alkoxyallene. Full details of these two approaches are given, as well as the characterization of undesired reaction pathways available to the Nazarov cyclization product. A sequence of experiments that led to an understanding of the unexpected reactivity of this key intermediate is described, which culminated in the successful total synthesis of (+)-rocaglamide.
Organic Letters | 2011
Masafumi Nakanishi; Corinne Minard; Pascal Retailleau; Kevin Cariou; Robert H. Dodd
The copper(I) catalyzed reaction of an enamide with an iminoiodane, in the presence of an alcohol, triggers the direct alkoxyamination of the double bond. This transformation represents a straightforward access to α-amino aminals in a completely regio- and diastereoselective manner. Use of a chiral Box ligand allows this reaction to be carried out in an enantioselective fashion.
Organic Letters | 2013
Sophie Nocquet-Thibault; Pascal Retailleau; Kevin Cariou; Robert H. Dodd
Using (diacetoxyiodo)benzene in conjunction with simple bromide salts in ethanol allows the regioselective ethoxybromination of a wide range of enamides, thus yielding highly versatile α-bromo hemiaminals, which can then be engaged in a broad array of transformations.
Journal of Medicinal Chemistry | 2013
Stephanie Gourdain; Clement Denhez; Linh Chi Bui; Fernando Rodrigues-Lima; Nathalie Janel; Jean Maurice Delabar; Kevin Cariou; Robert H. Dodd
A series of 3,5-diaryl-1H-pyrrolo[2,3-b]pyridines were synthesized and evaluated for inhibition of DYRKIA kinase in vitro. Derivatives having hydroxy groups on the aryl moieties (2c, 2j-l) demonstrated high inhibitory potencies with Kis in the low nanomolar range. Their methoxy analogues were up to 100 times less active. Docking studies at the ATP binding site suggested that these compounds bind tightly to this site via a network of multiple H-bonds with the peptide backbone. None of the active compounds were cytotoxic to KB cells at 10(-6) M. Kinase profiling revealed that compound 2j showed 2-fold selectivity for DYRK1A with respect to DYRK2 and DYRK3.
Angewandte Chemie | 2014
Alexandre Hentz; Pascal Retailleau; Vincent Gandon; Kevin Cariou; Robert H. Dodd
Two unprecedented N functionalizations of indoles with ynamides are described. By varying the electron-withdrawing group on the ynamide nitrogen atom, either Z-indolo-etheneamides or indolo-amidines can be selectively obtained under the same metal-free reaction conditions. The scope and synthetic potential of these reactions, as well as some mechanistic insights provided by DFT calculations, are reported.
Organic Letters | 2012
Jennifer Ciesielski; Kevin Cariou; Alison J. Frontier
An enantioselective strategy for the synthesis of phomactin natural products is described. The Lewis acid triggered cyclization of a β-iodoallenolate embedded in a 12-membered macrocycle was used to obtain a highly functionalized bicyclo[9.3.1]pentadecane in good yield and high diastereoselectivity. This iodoenone contains the substituents of the AD ring system of the phomactin family of natural products, appropriate for further functionalization. Synthesis of the oxadecalin core of phomactin A from the AD iodoenone intermediate was achieved. In this unusual strategy, rings A and B are both fashioned within a macrocyclic precursor.
Chemistry: A European Journal | 2015
Sophie Nocquet-Thibault; Anita Rayar; Pascal Retailleau; Kevin Cariou; Robert H. Dodd
In this study we demonstrate that the combination of bis(tert-butylcarbonyloxy)iodobenzene and lithium azide in acetonitrile allows the diazidation of various enamide substrates. The azido-oxyamination of the same substrates can be carried out in the presence of 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO). Control experiments strongly suggest that this latter process occurs through a shift in nature of the in situ generated electrophilic species from a radical to a cation. Finally, the versatility of the novel compounds synthesized was also assessed by running various selective reactions on them.
Journal of Organic Chemistry | 2015
Marion Daniel; Florent Blanchard; Sophie Nocquet-Thibault; Kevin Cariou; Robert H. Dodd
The synthesis of halogenated cyclic guanidines through iodine(III)-mediated umpolung of halide salts is described. Cyclic guanidines of various sizes can be obtained with generally excellent regioselectivities through either a chloro- or a bromocyclization, using Kosers reagent and the corresponding lithium salt.