Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin D. Courtney is active.

Publication


Featured researches published by Kevin D. Courtney.


Journal of Clinical Oncology | 2010

The PI3K Pathway As Drug Target in Human Cancer

Kevin D. Courtney; Ryan B. Corcoran; Jeffrey A. Engelman

The phosphatidylinositol 3-kinase (PI3K) signaling axis impacts on cancer cell growth, survival, motility, and metabolism. This pathway is activated by several different mechanisms in cancers, including somatic mutation and amplification of genes encoding key components. In addition, PI3K signaling may serve integral functions for noncancerous cells in the tumor microenvironment. Consequently, therapeutics targeting the PI3K pathway are being developed at a rapid pace, and preclinical and early clinical studies are beginning to suggest specific strategies to effectively use them. However, the central role of PI3K signaling in a large array of diverse biologic processes raises concerns about its use in therapeutics and increases the need to develop sophisticated strategies for its use. In this review, we will discuss how PI3K signaling affects the growth and survival of tumor cells. From this vantage, we will consider how inhibitors of the PI3K signaling cascade, either alone or in combination with other therapeutics, can most effectively be used for the treatment of cancer.


Nature Chemical Biology | 2012

Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

Dimitrios Anastasiou; Yimin Yu; William J. Israelsen; Jian Kang Jiang; Matthew B. Boxer; Bum Soo Hong; Wolfram Tempel; Svetoslav Dimov; Min Shen; Abhishek K. Jha; Hua Yang; Katherine R. Mattaini; Christian M. Metallo; Brian Prescott Fiske; Kevin D. Courtney; Scott Malstrom; Tahsin M. Khan; Charles Kung; Amanda P. Skoumbourdis; Henrike Veith; Noel Southall; Martin J. Walsh; Kyle R. Brimacombe; William Leister; Sophia Y. Lunt; Zachary R. Johnson; Katharine E. Yen; Kaiko Kunii; Shawn M. Davidson; Heather R. Christofk

Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism.


Current Biology | 2001

The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia

Theresia E. B. Stradal; Kevin D. Courtney; Klemens Rottner; Penelope Hahne; J. Victor Small; Ann Marie Pendergast

Cell movement is mediated by the protrusion of cytoplasm in the form of sheet- and rod-like extensions, termed lamellipodia and filopodia. Protrusion is driven by actin polymerization, a process that is regulated by signaling complexes that are, as yet, poorly defined. Since actin assembly is controlled at the tips of lamellipodia and filopodia [1], these juxtamembrane sites are likely to harbor the protein complexes that control actin polymerization dynamics underlying cell motility. An understanding of the regulation of protrusion therefore requires the characterization of the molecular components recruited to these sites. The Abl interactor (Abi) proteins, targets of Abl tyrosine kinases [2-4], have been implicated in Rac-dependent cytoskeletal reorganization in response to growth factor stimulation [5]. Here, we describe the unique localization of Abi proteins in living, motile cells. We show that Abi-1 and Abi-2b fused to enhanced yellow fluorescent protein (EYFP) are recruited to the tips of lamellipodia and filopodia. We identify the targeting domain as the homologous N terminus of these two proteins. Our findings are the first to suggest a direct involvement of members of the Abi protein family in the control of actin polymerization in protrusion events, and establish the Abi proteins as potential regulators of motility.


Nature | 2016

Targeting renal cell carcinoma with a HIF-2 antagonist

Wenfang Chen; Haley Hill; Alana Christie; Min-Soo Kim; Eboni Holloman; Andrea Pavia-Jimenez; Farrah Homayoun; Yuanqing Ma; Nirav Patel; Paul Yell; Guiyang Hao; Qurratulain Yousuf; Allison Joyce; Ivan Pedrosa; Heather Geiger; He Zhang; Jenny Chang; Kevin H. Gardner; Richard K. Bruick; Catherine Reeves; Tae Hyun Hwang; Kevin D. Courtney; Eugene P. Frenkel; Xiankai Sun; Naseem Zojwalla; Tai Wong; James P. Rizzi; Eli M. Wallace; John A. Josey; Yang Xie

Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α–HIF-1β) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1β, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.


BJUI | 2012

Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer.

Mari Nakabayashi; Lilian Werner; Kevin D. Courtney; Geoffrey Buckle; William Oh; Glen J. Bubley; Julia H. Hayes; Douglas Weckstein; Aymen Elfiky; Danny M. Sims; Philip W. Kantoff; Mary-Ellen Taplin

Study Type – Therapy (cohort)


Molecular and Cellular Neuroscience | 2000

Localization and Phosphorylation of Abl-Interactor Proteins, Abi-1 and Abi-2, in the Developing Nervous System

Kevin D. Courtney; Matthew Grove; Hendrika M. A. VanDongen; Antonius M. J. VanDongen; A.-S. LaMantia; Ann Marie Pendergast

Abl-interactor (Abi) proteins are targets of Abl-family nonreceptor tyrosine kinases and are required for Rac-dependent cytoskeletal reorganization in response to growth factor stimulation. We asked if the expression, phosphorylation, and cellular localization of Abi-1 and Abi-2 supports a role for these proteins in Abl signaling in the developing and adult mouse nervous system. In mid- to late-gestation embryos, abi-2 message is elevated in the central and peripheral nervous systems (CNS and PNS). Abi-1 mRNA is present, but not enhanced, in the CNS, and is not observed in PNS structures. Abi proteins from brain lysates undergo changes in apparent molecular weight and phosphorylation with increasing age. In the postnatal brain, abi-1 and abi-2 are expressed most prominently in cortical layers populated by projection neurons. In cultured neurons, Abi-1 and Abi-2 are concentrated in puncta throughout the cell body and processes. Both Abi and Abl proteins are present in synaptosomes and growth cone particles. Therefore, the Abi adaptors exhibit proper expression patterns and subcellular localization to participate in Abl kinase signaling in the nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Identification of CDCP1 as a hypoxia-inducible factor 2α (HIF-2α) target gene that is associated with survival in clear cell renal cell carcinoma patients

Brooke M. Emerling; Cyril H. Benes; George Poulogiannis; Eric L. Bell; Kevin D. Courtney; Hui Liu; Rayman Choo-Wing; Gary Bellinger; Kazumi S. Tsukazawa; Victoria Brown; Sabina Signoretti; Stephen P. Soltoff; Lewis C. Cantley

CUB domain-containing protein 1 (CDCP1) is a transmembrane protein that is highly expressed in stem cells and frequently overexpressed and tyrosine-phosphorylated in cancer. CDCP1 promotes cancer cell metastasis. However, the mechanisms that regulate CDCP1 are not well-defined. Here we show that hypoxia induces CDCP1 expression and tyrosine phosphorylation in hypoxia-inducible factor (HIF)-2α–, but not HIF-1α–, dependent fashion. shRNA knockdown of CDCP1 impairs cancer cell migration under hypoxic conditions, whereas overexpression of HIF-2α promotes the growth of tumor xenografts in association with enhanced CDCP1 expression and tyrosine phosphorylation. Immunohistochemistry analysis of tissue microarray samples from tumors of patients with clear cell renal cell carcinoma shows that increased CDCP1 expression correlates with decreased overall survival. Together, these data support a critical role for CDCP1 as a unique HIF-2α target gene involved in the regulation of cancer metastasis, and suggest that CDCP1 is a biomarker and potential therapeutic target for metastatic cancers.


Clinical Genitourinary Cancer | 2015

A Phase I Study of Everolimus and Docetaxel in Patients With Castration-Resistant Prostate Cancer

Kevin D. Courtney; Judith Manola; Aymen Elfiky; Robert Ross; William Oh; Jeffrey T. Yap; Annick D. Van den Abbeele; Christopher W. Ryan; Tomasz M. Beer; Massimo Loda; Carmen Priolo; Philip W. Kantoff; Mary-Ellen Taplin

BACKGROUND The PTEN tumor suppressor is frequently lost in CRPC, with activation of Akt-mTOR signaling, driving growth. We conducted a phase I trial of the mTOR inhibitor, everolimus, and docetaxel in CRPC. PATIENTS AND METHODS Eligible patients had progressive, metastatic, chemotherapy-naive CRPC. Patients received everolimus 10 mg daily for 2 weeks and underwent a restaging FDG-PET/computed tomography scan. Patient cohorts were subsequently treated at 3 dose levels of everolimus with docetaxel: 5 mg to 60 mg/m(2), 10 mg to 60 mg/m(2), and 10 mg to 70 mg/m(2). The primary end point was the safety and tolerability of combination therapy. RESULTS Accrual was 4 patients at level 1, 3 patients at level 2, and 8 patients at level 3. Common toxicities were hematologic and fatigue. Serum concentrations of everolimus when administered with docetaxel were 1.5 to 14.8 ng/mL in patients receiving 5 mg everolimus and 4.5 to 55.4 ng/mL in patients receiving 10 mg everolimus. Four patients had partial metabolic response (PMR) using FDG-PET, 12 had stable metabolic disease, and 2 had progressive metabolic disease after a 2-week treatment with everolimus alone. Five of 12 evaluable patients experienced a prostate-specific antigen (PSA) reduction ≥ 50% during treatment with everolimus together with docetaxel. All 4 patients with a PMR according to PET imaging experienced a PSA reduction in response to everolimus with docetaxel, and 3 of 4 had PSA declines ≥ 50%. CONCLUSION Everolimus 10 mg daily and docetaxel 60 mg/m(2) was safe in CRPC patients and these were the recommended doses in combination. FDG-PET response might serve as a biomarker for target inhibition by mTOR inhibitors.


eLife | 2017

Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer

Jianneng Li; Mohammad Alyamani; Ao Zhang; Kai Hsiung Chang; Michael Berk; Zhenfei Li; Ziqi Zhu; Marianne Petro; Cristina Magi-Galluzzi; Mary-Ellen Taplin; Jorge A. Garcia; Kevin D. Courtney; Eric A. Klein; Nima Sharifi

Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation. DOI: http://dx.doi.org/10.7554/eLife.20183.001


Current Opinion in Oncology | 2012

The evolving paradigm of second-line hormonal therapy options for castration-resistant prostate cancer.

Kevin D. Courtney; Mary-Ellen Taplin

Purpose of review The review examines recent advances in second-line hormonal therapy for the treatment of castrate-resistant prostate cancer (CRPC). Recent findings Recent data highlight the continued importance of androgen signaling in CRPC. These findings have spurred the development of novel inhibitors of adrenal and intra-tumoral androgen synthesis and novel androgen signaling inhibitors with activity in CRPC. In the past year abiraterone acetate, a CYP17 (17&agr;-hydroxylase / 17, 20 lyase) inhibitor, received US FDA approval for use in the treatment of metastatic CRPC in patients previously treated with docetaxel. Additionally, the novel androgen signaling inhibitor MDV3100 has been reported to confer a survival advantage compared to placebo in the same patient population. Here we review the scientific rationale for targeting androgen signaling in CRPC and the recent pivotal trials that support the use of novel second-line hormonal therapies. Additionally, we summarize ongoing preclinical and clinical efforts to ascertain and overcome mechanisms of resistance. Summary Novel inhibitors of extra-gonadal androgen synthesis and androgen receptor function demonstrate the continued importance of androgen signaling in CRPC. These agents have improved clinical outcomes for patients with metastatic CRPC.

Collaboration


Dive into the Kevin D. Courtney's collaboration.

Top Co-Authors

Avatar

Yull Edwin Arriaga

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

James Brugarolas

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquibul Hannan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Bellinger

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert D. Timmerman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Saad A. Khan

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge