Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Daniel Freeman-Cook is active.

Publication


Featured researches published by Kevin Daniel Freeman-Cook.


Journal of Medicinal Chemistry | 2010

Design of selective, ATP-competitive inhibitors of Akt.

Kevin Daniel Freeman-Cook; Christopher Autry; Gary Borzillo; Deborah Gordon; Elsa G. Barbacci-Tobin; Vincent Bernardo; David Briere; Tracey Clark; Matthew Corbett; John Jakubczak; Shefali Kakar; Elizabeth Knauth; Blaise Lippa; Michael Joseph Luzzio; Mahmoud N. Mansour; Gary J. Martinelli; Matthew A. Marx; Kendra Louise Nelson; Jayvardhan Pandit; Francis Rajamohan; Shaughnessy Robinson; Chakrapani Subramanyam; Liuqing Wei; Martin James Wythes; Joel Morris

This paper describes the design and synthesis of novel, ATP-competitive Akt inhibitors from an elaborated 3-aminopyrrolidine scaffold. Key findings include the discovery of an initial lead that was modestly selective and medicinal chemistry optimization of that lead to provide more selective analogues. Analysis of the data suggested that highly lipophilic analogues would likely suffer from poor overall properties. Central to the discussion is the concept of optimization of lipophilic efficiency and the ability to balance overall druglike propeties with the careful control of lipophilicity in the lead series. Discovery of the nonracemic amide series and subsequent modification produced an advanced analogue that performed well in advanced preclinical assays, including xenograft tumor growth inhibition studies, and this analogue was nominated for clinical development.


MedChemComm | 2011

Designing glucokinase activators with reduced hypoglycemia risk: discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus

Jeffrey A. Pfefferkorn; Angel Guzman-Perez; Peter J. Oates; John Litchfield; Gary E. Aspnes; Arindrajit Basak; John William Benbow; Martin A. Berliner; Jianwei Bian; Chulho Choi; Kevin Daniel Freeman-Cook; Jeffrey W. Corbett; Mary Theresa Didiuk; Joshua R. Dunetz; Kevin J. Filipski; William M. Hungerford; Christopher S. Jones; Kapil Karki; Anthony Lai Ling; Jian-Cheng Li; Leena Patel; Christian Perreault; Hud Risley; James Saenz; Wei Song; Meihua Tu; Robert J. Aiello; Karen Atkinson; Nicole Barucci; David A. Beebe

Glucokinase is a key regulator of glucose homeostasis and small molecule activators of this enzyme represent a promising opportunity for the treatment of Type 2 diabetes. Several glucokinase activators have advanced to clinical studies and demonstrated promising efficacy; however, many of these early candidates also revealed hypoglycemia as a key risk. In an effort to mitigate this hypoglycemia risk while maintaining the promising efficacy of this mechanism, we have investigated a series of substituted 2-methylbenzofurans as “partial activators” of the glucokinase enzyme leading to the identification of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as an early development candidate.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2.

Jeffrey W. Corbett; Kevin Daniel Freeman-Cook; Richard L. Elliott; Felix Vajdos; Francis Rajamohan; D Kohls; Eric S. Marr; Hailong Zhang; Liang Tong; Meihua Tu; S Murdande; Shawn D. Doran; Janet A. Houser; Wei Song; C.J Jones; Steven B. Coffey; Leanne M. Buzon; Martha L. Minich; Kenneth J. DiRico; Susan Tapley; R.K. McPherson; E Sugarman; H.J Harwood; William Paul Esler

Screening Pfizers compound library resulted in the identification of weak acetyl-CoA carboxylase inhibitors, from which were obtained rACC1 CT-domain co-crystal structures. Utilizing HTS hits and structure-based drug discovery, a more rigid inhibitor was designed and led to the discovery of sub-micromolar, spirochromanone non-specific ACC inhibitors. Low nanomolar, non-specific ACC-isozyme inhibitors that exhibited good rat pharmacokinetics were obtained from this chemotype.


ACS Medicinal Chemistry Letters | 2013

Identification of Tetrahydropyrido[4,3-d]pyrimidine Amides as a New Class of Orally Bioavailable TGR5 Agonists

David W. Piotrowski; Kentaro Futatsugi; Joseph Scott Warmus; Suvi T. M. Orr; Kevin Daniel Freeman-Cook; Allyn T. Londregan; Liuqing Wei; Sandra M. Jennings; Michael Herr; Steven B. Coffey; Wenhua Jiao; Gregory Storer; David Hepworth; Jian Wang; Sophie Y. Lavergne; Janice E. Chin; John R. Hadcock; Martin B. Brenner; Angela Wolford; Ann M. Janssen; Nicole S. Roush; Joanne Buxton; Terri Hinchey; Amit S. Kalgutkar; Raman Sharma; Declan Flynn

Takeda G-protein-coupled receptor 5 (TGR5) represents an exciting biological target for the potential treatment of diabetes and metabolic syndrome. A new class of high-throughput screening (HTS)-derived tetrahydropyrido[4,3-d]pyrimidine amide TGR5 agonists is disclosed. We describe our effort to identify an orally available agonist suitable for assessment of systemic TGR5 agonism. This effort resulted in identification of 16, which had acceptable potency and pharmacokinetic properties to allow for in vivo assessment in dog. A key aspect of this work was the calibration of human and dog in vitro assay systems that could be linked with data from a human ex vivo peripheral blood monocyte assay that expresses receptor at endogenous levels. Potency from the human in vitro assay was also found to correlate with data from an ex vivo human whole blood assay. This calibration exercise provided confidence that 16 could be used to drive plasma exposures sufficient to test the effects of systemic activation of TGR5.


Journal of Medicinal Chemistry | 2012

Maximizing lipophilic efficiency: the use of Free-Wilson analysis in the design of inhibitors of acetyl-CoA carboxylase.

Kevin Daniel Freeman-Cook; Paul Amor; Scott Bader; Leanne M. Buzon; Steven B. Coffey; Jeffrey W. Corbett; Kenneth J. DiRico; Shawn D. Doran; Richard L. Elliott; William Esler; Angel Guzman-Perez; Kevin E. Henegar; Janet A. Houser; Christopher S. Jones; Chris Limberakis; Katherine Loomis; Kirk McPherson; Sharad Murdande; Kendra Louise Nelson; Dennis Paul Phillion; Betsy S. Pierce; Wei Song; Eliot Sugarman; Susan Tapley; Meihua Tu; Zhengrong Zhao

This paper describes the design and synthesis of a novel series of dual inhibitors of acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2). Key findings include the discovery of an initial lead that was modestly potent and subsequent medicinal chemistry optimization with a focus on lipophilic efficiency (LipE) to balance overall druglike properties. Free-Wilson methodology provided a clear breakdown of the contributions of specific structural elements to the overall LipE, a rationale for prioritization of virtual compounds for synthesis, and a highly successful prediction of the LipE of the resulting analogues. Further preclinical assays, including in vivo malonyl-CoA reduction in both rat liver (ACC1) and rat muscle (ACC2), identified an advanced analogue that progressed to regulatory toxicity studies.


Synthetic Communications | 2012

Synthesis of Unprotected Carboxy Indazoles via Pd-Catalyzed Carbonylation

Philip Wainwright; Remedios Perni; Clare Vickers; Steven B. Coffey; Leanne M. Buzon; Kenneth J. DiRico; Kendra Louise Nelson; Zhengrong Zhao; Chris Limberakis; Kevin Daniel Freeman-Cook; Jeffrey W. Corbett

Abstract The first published synthesis of unprotected carboxy indazoles from the corresponding bromoindazoles is described. This is achieved via Pd(II)-catalyzed carbonylation and is demonstrated to work on a variety of indazoles. GRAPHICAL ABSTRACT


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and biological evaluation of novel hygromycin A antibacterial agents

Michael Scott Visser; Kevin Daniel Freeman-Cook; Steven J. Brickner; Katherine E. Brighty; Phuong T. Le; Sarah K. Wade; Rhonda Monahan; Gary J. Martinelli; Kyle T. Blair; Dianna E. Moore

Novel hygromycin A derivatives bearing a variety of functionalized aminocyclitol moieties have been synthesized in an effort to increase the antibacterial activity and drug-like properties of this class of agents. A systematic study of the effect of alkylation and removal of the hydroxyls of the aminocyclitol directed us to a series of alkylated aminocyclitol derivatives with improved gram-positive activity.


Archive | 2009

Pyrazolospiroketone acetyl-c0a carboxylase inhibitors

Jeffrey W. Corbett; Richard Louis Elliott; Kevin Daniel Freeman-Cook; David A. Griffith; Dennis Paul Phillion


Bioorganic & Medicinal Chemistry Letters | 2006

Potent, selective pyrimidinetrione-based inhibitors of MMP-13

Lawrence A. Reiter; Kevin Daniel Freeman-Cook; Christopher S. Jones; Gary J. Martinelli; Amy S. Antipas; Martin A. Berliner; Kaushik Datta; James T. Downs; James D. Eskra; Michael D. Forman; Elaine M. Greer; Roberto E. Guzman; Joel R. Hardink; Fouad Janat; Nandell F. Keene; Ellen R. Laird; Jennifer Liras; Lori L. Lopresti-Morrow; Peter G. Mitchell; Jayvardhan Pandit; Donald G. Robertson; Diana Sperger; Marcie L. Vaughn-Bowser; Darra M. Waller; Sue A. Yocum


Archive | 2007

Amine derivatives useful as anticancer agents

Matthew Corbett; Goss Stryker Kauffman; Kevin Daniel Freeman-Cook; Blaise Lippa; Michael Joseph Luzzio; Joel Morris

Collaboration


Dive into the Kevin Daniel Freeman-Cook's collaboration.

Researchain Logo
Decentralizing Knowledge