Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Dee is active.

Publication


Featured researches published by Kevin Dee.


Archive | 2012

Proceedings of the SPIE

Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; Christopher H. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard

Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.


Proceedings of SPIE | 2012

WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; C. J. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard

We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2 degree prime focus field of view at the WHT, with a buffered pick and place positioner system hosting 1000 multi-object (MOS) fibres or up to 30 integral field units for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000.


Proceedings of SPIE | 2008

ACAM: a new imager/spectrograph for the William Herschel Telescope

Chris R. Benn; Kevin Dee; Tibor Agócs

ACAM will be mounted permanently at a folded-Cassegrain focus of the WHT. It can be used for broad-band or narrow-band optical imaging of an 8.3-arcmin field, or for low-resolution (R ~ 500) spectroscopy. As the only wide-field optical imager at the Cassegrain focus, ACAM is designed to cater for a broad range of science programmes, including those requiring rapid response (e.g. gamma-ray bursts, supernovae) or scheduling at awkward intervals (e.g. successive exoplanet transits), and those requiring the use of many filters (e.g. Hα mapping of low-redshift galaxies). The imaging requirements alone are demanding, requiring a trade-off between field of view (> 8 arcmin), PSF (<< seeing), wavelength coverage (UV to near-IR), throughput (> 0.8) and radius-dependent wavelength shift (< 0.5 nm, for narrow-band filters). We discuss how the trade-off was effected and present the final optical and mechanical design, and the expected performance.


Proceedings of SPIE | 2006

GLAS: engineering a common-user Rayleigh laser guide star for adaptive optics on the William Herschel Telescope

Gordon Talbot; Don Carlos Abrams; Nikolaos Apostolakos; Richard Bassom; Colin Blackburn; Maarten F. Blanken; Diego Cano Infantes; Alan K. Chopping; Kevin Dee; N. A. Dipper; Eddy Elswijk; Bernard Enthoven; Thomas Gregory; Rik ter Horst; Ron Humphreys; Jan Idserda; Paul Jolley; Sjouke Kuindersma; Richard M. McDermid; Tim Morris; Richard M. Myers; Sergio Picó; Johan Pragt; Simon J. Rees; Jürg Rey; Marcos Reyes; Rene G. M. Rutten; Ton Schoenmaker; Jure Skvarc; Simon Tulloch

The GLAS (Ground-layer Laser Adaptive-optics System) project is to construct a common-user Rayleigh laser beacon that will work in conjunction with the existing NAOMI adaptive optics system, instruments (near IR imager INGRID, optical integral field spectrograph OASIS, coronagraph OSCA) and infrastructure at the 4.2-m William Herschel Telescope (WHT) on La Palma. The laser guide star system will increase sky coverage available to high-order adaptive optics from ~1% to approaching 100% and will be optimized for scientific exploitation of the OASIS integral-field spectrograph at optical wavelengths. Additionally GLAS will be used in on-sky experiments for the application of laser beacons to ELTs. This paper describes the full range of engineering of the project ranging through the laser launch system, wavefront sensors, computer control, mechanisms, diagnostics, CCD detectors and the safety system. GLAS is a fully funded project, with final design completed and all equipment ordered, including the laser. Integration has started on the WHT and first light is expected summer 2006.


Proceedings of SPIE | 2010

Status update of the CANARY on-sky MOAO demonstrator

Eric Gendron; Tim Morris; Z. Hubert; Richard M. Myers; Andy Longmore; Gerard Rousset; Gordon Talbot; Fabrice Vidal; N. A. Dipper; Damien Gratadour; Nik Looker; M. Brangier; Edward J. Younger; A. Sevin; A. Basden; Denis Perret; Laura K. Young; David Atkinson; Fanny Chemla; David H. Henry; T. Butterley; Philippe Laporte; Dani Guzman; M. Marteaud; Deli Geng; Nicolas Védrenne; Mark A. Harrison; T. Fusco; Andrés Guesalaga; Colin N. Dunlop

The CANARY on-sky MOAO demonstrator is being integrated in the laboratory and a status update about its various components is presented here. We also discuss the alignment and calibration procedures used to improve system performance and overall stability. CANARY will be commissioned at the William Herschel Telescope at the end of September 2010.


Proceedings of SPIE | 2016

Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

Gavin B. Dalton; Scott Trager; Don Carlos Abrams; P. Bonifacio; J. Alfonso L. Aguerri; Kevin Middleton; Chris R. Benn; Kevin Dee; Frédéric Sayède; Ian Lewis; J. Pragt; Sergio Picó; N. A. Walton; Jeurg Rey; Carlos Allende Prieto; José Peñate; Emilie Lhome; Tibor Agócs; José Luis Benito Alonso; David Terrett; Matthew Brock; James Gilbert; Ellen Schallig; Andy Ridings; Isabelle Guinouard; Marc Verheijen; Ian Tosh; Kevin Rogers; M. A. Lee; Iain A. Steele

We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018.


Proceedings of SPIE | 2004

GRACE: a controlled environment for adaptive optics at the William Herschel Telescope

Gordon Talbot; Don Carlos Abrams; Chris R. Benn; Alan K. Chopping; Kevin Dee; Sebastian G. Els; Martin Fisher; Stephen J. Goodsell; Doug Gray; Paul Jolley

The William Herschel Telescope (WHT) has an adaptive optics (AO) suite consisting of the AO system NAOMI, near IR imager INGRID, optical field spectrograph OASIS and coronagraph OSCA. GRACE (GRound based Adaptive optics Controlled Environment) is a dedicated structure at a Nasmyth focus designed to facilitate routine AO use by providing a controlled environment for the instrument system. However, GRACE is not just a building; it is all of the systems associated with providing the controlled environment, especially the control of air quality, temperature and flow. A key concern was that adding the GRACE building to the Nasmyth platform would not adversely change the telescope performance. This paper gives the background to GRACE, its specification and design, the building construction and installation, the environmental controls installed and their performance, the services provided, the effect of the new structure on telescope performance, the results of the project, including the effect having a controlled environment on AO performance and its planned use for a Rayleigh laser guide star system.


Proceedings of SPIE | 2016

First results of tests on the WEAVE fibres

Frédéric Sayède; Youssef Younes; Gilles Fasola; Stéphane Dorent; Don Carlos Abrams; J. Alphonso L. Aguerri; P. Bonifacio; E. Carrasco; Gavin Dalton; Kevin Dee; Philippe Laporte; Ian Lewis; Emilie Lhome; Kevin Middleton; Johan Pragt; Juerg Rey; Remko Stuik; Scott Trager; A. Vallenari

WEAVE is a new wide-field spectroscopy facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field of view prime focus corrector with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit. The IFUs (Integral Field Units) and the MOS (Multi Object Spectrograph) fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of ~5000 or modest wavelength coverage in both arms at a resolution ~20000. The instrument is expected to be on-sky by the first quarter of 2018 to provide spectroscopic sampling of the fainter end of the Gaia astrometric catalogue, chemical labeling of stars to V~17, and dedicated follow up of substantial numbers of sources from the medium deep LOFAR surveys. After a brief description of the Fibre System, we describe the fibre test bench, its calibration, and some test results. We have to verify 1920 fibres from the MOS bundles and 740 fibres from the mini-IFU bundles with the test bench. In particular, we present the Focal Ratio Degradation of a cable.


Proceedings of SPIE | 2016

Manufacturing process for the WEAVE prime focus corrector optics for the 4.2m William Hershel Telescope

Emilie Lhome; Tibor Agócs; Don Carlos Abrams; Kevin Dee; Kevin Middleton; Ian Tosh; Attila Jaskó; Peter Connor; Dave Cochrane; Luke Gers; Graeme Jonas; Andrew Rakich; Chris R. Benn; Marc Balcells; Scott Trager; Gavin B. Dalton; E. Carrasco; A. Vallenari; P. Bonifacio; J. Alfonso L. Aguerri

In this paper, we detail the manufacturing process for the lenses that will constitute the new two-degree field-of-view Prime Focus Corrector (PFC) for the 4.2m William Herschel Telescope (WHT) optimised for the upcoming WEAVE Multi-Object Spectroscopy (MOS) facility. The corrector, including an Atmospheric Dispersion Corrector (ADC), is made of six large lenses, the largest being 1.1-meter diameter. We describe how the prescriptions of the optical design were translated into manufacturing specifications for the blanks and lenses. We explain how the as-built glass blank parameters were fed back into the optical design and how the specifications for the lenses were subsequently modified. We review the critical issues for the challenging manufacturing process and discuss the trade-offs that were necessary to deliver the lenses while maintaining the optimal optical performance. A short description of the lens optical testing is also presented. Finally, the subsequent manufacturing steps, including assembly, integration, and alignment are outlined.


Proceedings of SPIE | 2014

Final optical design for the WEAVE two-degree prime focus corrector

Tibor Agócs; Don Carlos Abrams; Emilie Lhome; Kevin Dee; Gavin Dalton; Kevin Middleton; P. Bonifacio; J. Alfonso L. Aguerri; Scott Trager

WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. We present the final optical design for the two-degree Prime Focus Corrector (PFC) for the WHT optimised for WEAVE. The nominal optical design provides a polychromatic PSF that does not exceed 0.6 arcsec (80% encircled energy diameter) over a wavelength range from 370 to 1000 nm covering a two-degree field-of-view (FOV) for zenith angles up to 65 degrees. We describe the optical issues that had to be addressed prior to the Final Design Review (FDR) and present the trade-offs that were necessary between manufacturability and performance. We detail the results of an in-depth Monte Carlo simulation that contains all the manufacturing, alignment and stability issues that affect the PSF error budget of the Prime Focus Corrector. As a result of multiple iterations regarding the different tolerances of the system, the polychromatic PSF (80% encircled energy diameter) including all errors stays below the required 1 arcsec.

Collaboration


Dive into the Kevin Dee's collaboration.

Top Co-Authors

Avatar

P. Bonifacio

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Kevin Middleton

Science and Technology Facilities Council

View shared research outputs
Top Co-Authors

Avatar

Scott Trager

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Alfonso L. Aguerri

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Chris R. Benn

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Tosh

Rutherford Appleton Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge