Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Deighton is active.

Publication


Featured researches published by Kevin Deighton.


Applied Physiology, Nutrition, and Metabolism | 2013

Appetite, energy intake, and PYY3-36 responses to energy-matched continuous exercise and submaximal high-intensity exercise

Kevin Deighton; Efthimia Karra; Rachel L. Batterham; David J. Stensel

High-intensity intermittent exercise induces physiological adaptations similar to energy-matched continuous exercise, but the comparative appetite and energy balance responses are unknown. Twelve healthy males (mean ± SD: age, 22 ± 3 years; body mass index, 23.7 ± 3.0 kg·m(-2); maximum oxygen uptake, 52.4 ± 7.1 mL·kg(-1)·min(-1)) completed three 8 h trials (control, steady-state exercise (SSE), high-intensity intermittent exercise (HIIE)) separated by 1 week. Trials commenced upon completion of a standardized breakfast. Exercise was performed from hour 2 to hour 3. In SSE, 60 min of cycling at 59.5% ± 1.6% of maximum oxygen uptake was performed. In HIIE, ten 4-min cycling intervals were completed at 85.8% ± 4.0% of maximum oxygen uptake, with a 2-min rest between each interval. A standardized lunch and an ad libitum afternoon meal were provided at hours 3.75 and 7, respectively. Appetite ratings and peptide YY3-36 concentrations were measured throughout each trial. Appetite was acutely suppressed during exercise, but more so during HIIE (p < 0.05). Peptide YY3-36 concentrations increased significantly upon cessation of exercise in SSE (p = 0.002), but were highest in the hours after exercise in HIIE (p = 0.05). Exercise energy expenditure was not different between HIIE and SSE (p = 0.649), but perceived exertion was higher in HIIE (p < 0.0005). Ad libitum energy intake did not differ between trials (p = 0.833). Therefore, relative energy intake (energy intake minus the net energy expenditure of exercise) was lower in the SSE and HIIE trials than in the control trial (control, 4759 ± 1268 kJ; SSE, 2362 ± 1224 kJ; HIIE, 2523 ± 1402 kJ; p < 0.0005). An acute bout of energy-matched continuous exercise and HIIE were equally effective at inducing an energy deficit without stimulating compensatory increases in appetite.


Appetite | 2012

Appetite, energy intake and resting metabolic responses to 60 min treadmill running performed in a fasted versus a postprandial state.

Kevin Deighton; Jessica C. Zahra; David J. Stensel

This study investigated the effect of fasted and postprandial exercise on appetite, energy intake and resting metabolic responses. Twelve healthy males (mean±SD: age 23±3 years, body mass index 22.9±2.1 kg m(-2), maximum oxygen uptake 57.5±9.7 mL kg(-1) min(-1)) performed three 10 h experimental trials (control, fasted exercise and postprandial exercise) in a Latin Square design. Trials commenced at 8 am after an overnight fast. Sixty min of treadmill running at ∼70% of maximum oxygen uptake was performed at 0-1 h in the fasted exercise trial and 4-5 h in the postprandial exercise trial. A standardised breakfast was provided at 1.5 h and ad libitum buffet meals at 5.5 and 9.5 h. Appetite ratings and resting expired air samples were collected throughout each trial. Postprandial exercise suppressed appetite to a greater extent than fasted exercise. Ad libitum energy intake was not different between trials, resulting in a negative energy balance in exercise trials relative to control after accounting for differences in energy expenditure (control: 9774±2694 kJ; fasted exercise: 6481±2318 kJ; postprandial exercise: 6017±3050 kJ). These findings suggest that 60 min treadmill running induces a negative daily energy balance relative to a sedentary day but is no more effective when performed before or after breakfast.


Medicine and Science in Sports and Exercise | 2016

Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males.

Nawal Alajmi; Kevin Deighton; James A. King; Alvaro Reischak-Oliveira; Lucy K. Wasse; Jenny Jones; Rachel L. Batterham; David J. Stensel

ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women.


Appetite | 2014

Appetite and gut peptide responses to exercise and calorie restriction. The effect of modest energy deficits.

Kevin Deighton; Rachel L. Batterham; David J. Stensel

Weight loss is the result of a sustained negative energy balance, which is typically achieved by decreasing food intake and/or increasing physical activity. Current evidence suggests that acute energy deficits of ~4820 kJ elicit contrasting homeostatic responses when induced by exercise and food restriction but the response to government-recommended energy deficits is unknown. Twelve healthy men (mean(SD): age 24(5) years, body mass index 23.8(2.7) kg⋅m(-2), maximum oxygen uptake 55.4(9.1) mL⋅kg(-1)⋅min(-1)) completed three 8 h trials (control (Con), exercise-induced energy deficit (Ex-Def) and food restriction (Food-Def)) separated by 1 week. Thirty minutes of cycling at 64.5(3.2)% of maximum oxygen uptake was performed in Ex-Def from 0 to 0.5 h, which induced an energy deficit of 1469(256) kJ. An equivalent energy deficit was induced in Food-Def (1478(275) kJ) by reducing the energy content of standardised test meals at 1 h and 4 h. Appetite ratings, acylated ghrelin and peptide YY3-36 concentrations were measured throughout each trial. An ad libitum meal was provided at 7 h. Appetite was higher in Food-Def than Ex-Def from 4 to 8 h (P = 0.033) and tended to be higher across the entire 8 h trial (P = 0.059). However, energy intake at the ad libitum meal did not differ between trials (P = 0.634; Con 4376 (1634); Food-Def 4481 (1846); Ex-Def 4217 (1850) kJ). Acylated ghrelin was not related to changes in appetite but plasma PYY3-36 concentrations were higher in Ex-Def than Food-Def (P < 0.05) and negatively correlated with changes in appetite across the entire 8 h trial (P = 0.037). An energy deficit of ~1475 kJ stimulated compensatory increases in appetite when induced via calorie restriction but not when achieved by an acute bout of exercise. Appetite responses were associated with changes in plasma PYY3-36 but not acylated ghrelin concentrations and did not influence subsequent energy intake.


Proceedings of the Nutrition Society | 2014

Creating an acute energy deficit without stimulating compensatory increases in appetite: is there an optimal exercise protocol?

Kevin Deighton; David J. Stensel

Recent years have witnessed significant interest from both the scientific community and the media regarding the influence of exercise on subsequent appetite and energy intake responses. This review demonstrates a consensus among the majority of scientific investigations that an acute bout of land-based endurance exercise does not stimulate any compensatory increases in appetite and energy intake on the day of exercise. Alternatively, preliminary evidence suggests that low volume, supramaximal exercise may stimulate an increase in appetite perceptions during the subsequent hours. In accordance with the apparent insensitivity of energy intake to exercise in the short term, the daily energy balance response to exercise appears to be primarily determined by the energy cost of exercise. This finding supports the conclusions of recent training studies that the energy expenditure of exercise is the strongest predictor of fat loss during an exercise programme.


Nutrients | 2016

Exercise, appetite and weight control: are there differences between men and women?

Alice E. Thackray; Kevin Deighton; James A. King; David J. Stensel

Recent years have witnessed significant research interest surrounding the interaction among exercise, appetite and energy balance, which has important implications for health. The majority of exercise and appetite regulation studies have been conducted in males. Consequently, opportunities to examine sex-based differences have been limited, but represent an interesting avenue of inquiry considering postulations that men experience greater weight loss after exercise interventions than women. This article reviews the scientific literature relating to the acute and chronic effects of exercise on appetite control in men and women. The consensus of evidence demonstrates that appetite, appetite-regulatory hormone and energy intake responses to acute exercise do not differ between the sexes, and there is little evidence indicating compensatory changes occur after acute exercise in either sex. Limited evidence suggests women respond to the initiation of exercise training with more robust compensatory alterations in appetite-regulatory hormones than men, but whether this translates to long-term differences is unknown. Current exercise training investigations do not support sex-based differences in appetite or objectively assessed energy intake, and increasing exercise energy expenditure elicits at most a partial energy intake compensation in both sexes. Future well-controlled acute and chronic exercise studies directly comparing men and women are required to expand this evidence base.


Frontiers in Physiology | 2017

Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude

Oliver Michael Shannon; Lauren Duckworth; Matthew John Barlow; Kevin Deighton; Jamie Matu; Emily L. Williams; David Woods; Long Xie; Blossom C. M. Stephan; Mario Siervo; John P. O'Hara

Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude.


British Journal of Nutrition | 2016

Test-meal palatability is associated with overconsumption but better represents preceding changes in appetite in non-obese males.

Kevin Deighton; James Frampton; Javier T. Gonzalez

Single-course, ad libitum meals are recommended for the assessment of energy intake within appetite research. This study represents the first investigation of the comparative sensitivity of two single-course, ad libitum meals designed to differ in palatability. We conducted two experiments using a preload study design. All protocols were identical except for the energy content of the preloads (Expt 1: 579 and 1776 kJ; Expt 2: 828 and 4188 kJ). During each experiment, ten healthy men completed four experimental trials constituting a low- or high-energy preload beverage, a 60-min intermeal interval and consumption of a pasta-based or a porridge-based, ad libitum meal. Appetite ratings were measured throughout each trial, and palatability was assessed after food consumption. Preload manipulation did not influence appetite (P=0·791) or energy intake (P=0·561) in Expt 1. Palatability and energy intake were higher for the pasta meal than for the porridge meal in both experiments (palatability P≤0·002; energy intake P≤0·001). In Expt 2, consumption of the high-energy preload decreased appetite (P=0·051) and energy intake (P=0·002). Energy compensation was not significantly different between pasta and porridge meals (P=0·172), but was more strongly correlated with preceding changes in appetite at the pasta meal (r -0·758; P=0·011) than the porridge meal (r -0·498; P=0·143). The provision of a highly palatable, pasta-based meal produced energy intakes that were more representative of preceding appetite ratings, but the moderately palatable, porridge-based meal produced more ecologically valid energy intakes. Ad libitum meal selection and design may require a compromise between sensitivity and ecological validity.


International Journal of Sport Nutrition and Exercise Metabolism | 2017

Effect of Dietary Nitrate Supplementation on Swimming Performance in Trained Swimmers

Sam Lowings; Oliver Michael Shannon; Kevin Deighton; Jamie Matu; Matthew John Barlow

Nitrate supplementation appears to be most ergogenic when oxygen availability is restricted and subsequently may be particularly beneficial for swimming performance due to the breath-hold element of this sport. This represents the first investigation of nitrate supplementation and swimming time-trial (TT) performance. In a randomized double-blind repeated-measures crossover study, ten (5 male, 5 female) trained swimmers ingested 140ml nitrate-rich (~12.5mmol nitrate) or nitrate-depleted (~0.01mmol nitrate) beetroot juice. Three hours later, subjects completed a maximal effort swim TT comprising 168m (8 × 21m lengths) backstroke. Preexercise fractional exhaled nitric oxide concentration was significantly elevated with nitrate compared with placebo, Mean (SD): 17 (9) vs. 7 (3)p.p.b., p = .008. Nitrate supplementation had a likely trivial effect on overall swim TT performance (mean difference 1.22s; 90% CI -0.18-2.6s; 0.93%; p = .144; d = 0.13; unlikely beneficial (22.6%), likely trivial (77.2%), most unlikely negative (0.2%)). The effects of nitrate supplementation during the first half of the TT were trivial (mean difference 0.29s; 90% CI -0.94-1.5s; 0.46%; p = .678; d = 0.05), but there was a possible beneficial effect of nitrate supplementation during the second half of the TT (mean difference 0.93s; 90% CI 0.13-1.70s; 1.36%; p = .062; d = 0.24; possibly beneficial (63.5%), possibly trivial (36.3%), most unlikely negative (0.2%)). The duration and speed of underwater swimming within the performance did not differ between nitrate and placebo (both p > .30). Nitrate supplementation increased nitric oxide bioavailability but did not benefit short-distance swimming performance or the underwater phases of the TT. Further investigation into the effects of nitrate supplementation during the second half of performance tests may be warranted.


Journal of the Royal Army Medical Corps | 2017

The British Services Dhaulagiri Medical Research Expedition 2016: a unique military and civilian research collaboration

Adrian Mellor; Josh Bakker-Dyos; M Howard; Christopher J. Boos; M Cooke; Vincent E; P Scott; John P. O'Hara; S B Clarke; Matthew John Barlow; Jamie Matu; Kevin Deighton; Neil E. Hill; Caroline Newman; R Cruttenden; D A Holdsworth; David Woods

Introduction High-altitude environments lead to a significant physiological challenge and disease processes which can be life threatening; operational effectiveness at high altitude can be severely compromised. The UK military research is investigating ways of mitigating the physiological effects of high altitude. Methods The British Service Dhaulagiri Research Expedition took place from March to May 2016, and the military personnel were invited to consent to a variety of study protocols investigating adaptation to high altitudes and diagnosis of high-altitude illness. The studies took place in remote and austere environments at altitudes of up to 7500 m. Results This paper gives an overview of the individual research protocols investigated, the execution of the expedition and the challenges involved. 129 servicemen and women were involved at altitudes of up to 7500 m; 8 research protocols were investigated. Conclusions The outputs from these studies will help to individualise the acclimatisation process and inform strategies for pre-acclimatisation should troops ever need to deploy at high altitude at short notice.

Collaboration


Dive into the Kevin Deighton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Woods

Leeds Beckett University

View shared research outputs
Top Co-Authors

Avatar

Adrian Mellor

James Cook University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ben Jones

Leeds Beckett University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. O'Hara

Leeds Beckett University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge