Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin E. Fisher is active.

Publication


Featured researches published by Kevin E. Fisher.


Blood | 2009

Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP–dependent proteolysis in 3-dimensional collagen matrices

Amber N. Stratman; W. Brian Saunders; Anastasia Sacharidou; Wonshill Koh; Kevin E. Fisher; David C. Zawieja; Michael J. Davis; George E. Davis

Here we show that endothelial cells (EC) require matrix type 1-metalloproteinase (MT1-MMP) for the formation of lumens and tube networks in 3-dimensional (3D) collagen matrices. A fundamental consequence of EC lumen formation is the generation of vascular guidance tunnels within collagen matrices through an MT1-MMP-dependent proteolytic process. Vascular guidance tunnels represent a conduit for EC motility within these spaces (a newly remodeled 2D matrix surface) to both assemble and remodel tube structures. Interestingly, it appears that twice as many tunnel spaces are created than are occupied by tube networks after several days of culture. After tunnel formation, these spaces represent a 2D migratory surface within 3D collagen matrices allowing for EC migration in an MMP-independent fashion. Blockade of EC lumenogenesis using inhibitors that interfere with the process (eg, integrin, MMP, PKC, Src) completely abrogates the formation of vascular guidance tunnels. Thus, the MT1-MMP-dependent proteolytic process that creates tunnel spaces is directly and functionally coupled to the signaling mechanisms required for EC lumen and tube network formation. In summary, a fundamental and previously unrecognized purpose of EC tube morphogenesis is to create networks of matrix conduits that are necessary for EC migration and tube remodeling events critical to blood vessel assembly.


Blood | 2010

Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events

Anastasia Sacharidou; Wonshill Koh; Amber N. Stratman; Anne M. Mayo; Kevin E. Fisher; George E. Davis

Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)-B and Jam-C, membrane type 1-matrix metalloproteinase (MT1-MMP), and integrin alpha(2)beta(1), which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely interferes with lumen and tube formation resulting from a lack of Cdc42 activation, inhibition of Cdc42-GTP-dependent signal transduction, and blockade of MT1-MMP-dependent proteolysis. This process requires interdependent Cdc42 and MT1-MMP signaling, which involves Par3 binding to the Jam-B and Jam-C cytoplasmic tails, an interaction that is necessary to physically couple the components of the lumen signaling complex. MT1-MMP proteolytic activity is necessary for Cdc42 activation during EC tube formation in 3D collagen matrices but not on 2D collagen surfaces, whereas Cdc42 activation is necessary for MT1-MMP to create vascular guidance tunnels and tube networks in 3D matrices through proteolytic events. This work reveals a novel interdependent role for Cdc42-dependent signaling and MT1-MMP-dependent proteolysis, a process that occurs selectively in 3D collagen matrices and that requires EC lumen signaling complexes, to control human EC tubulogenesis during vascular morphogenesis.


Human Pathology | 2014

Accurate detection of BRAF p.V600E mutations in challenging melanoma specimens requires stringent immunohistochemistry scoring criteria or sensitive molecular assays.

Kevin E. Fisher; Cynthia Cohen; Momin T. Siddiqui; John F. Palma; Edward Lipford; John W. Longshore

Malignant melanoma patients require BRAF mutation testing prior to initiating BRAF inhibitor therapy. Molecular testing remains the diagnostic gold standard, but recent work suggests that BRAF immunohistochemistry (IHC) confers comparable results. Sample attributes and scoring criteria that may affect BRAF IHC interpretation, however, are poorly defined. We investigated formalin-fixed, paraffin-embedded samples with variable challenging interpretative attributes: metastases, core needle biopsies, sample tissues less than 60 mm(2), samples with greater than 50% necrosis, and/or samples with greater than 10% melanin pigmentation. Three pathologists independently scored 122 BRAF V600E IHC-labeled melanoma samples for percentage (0%-100%) of staining intensity (0-3+). Interscorer BRAF IHC discrepancies were resolved by consensus review. Lenient (≥1+, >0%) and stringent (≥2+, ≥10%) IHC scoring criteria were compared to BRAF V600 mutation (cobas) results (n = 118). Specimens with greater than 10% melanin pigmentation and metastatic samples produced the majority of interobserver IHC and IHC/cobas scoring discrepancies. Consensus review using stringent scoring criteria decreased the number of discrepant results, yielded very good interobserver reproducibility, and improved specificity and positive predictive value for BRAF p.V600E detection. BRAF p.V600K mutations accounted for 57.1% of false-negative IHC results when stringent, consensus criteria scoring were used. The cobas test detected 75.0% (8/12) of BRAF IHC-negative BRAF p.V600K mutations confirmed by next-generation sequencing. Molecular BRAF testing is the preferred screening test for BRAF inhibitor therapy eligibility because of superior sensitivity in challenging interpretative melanoma specimens. However, BRAF V600E IHC has excellent specificity and positive predictive value when stringent, consensus scoring criteria are implemented. To decrease IHC scoring discrepancies, pathologists should interpret metastatic and pigmented samples with caution.


The Journal of Molecular Diagnostics | 2016

Clinical Validation and Implementation of a Targeted Next-Generation Sequencing Assay to Detect Somatic Variants in Non-Small Cell Lung, Melanoma, and Gastrointestinal Malignancies

Kevin E. Fisher; Linsheng Zhang; Jason Wang; Geoffrey H. Smith; Scott Newman; Thomas M. Schneider; Rathi N. Pillai; Ragini R. Kudchadkar; Taofeek K. Owonikoko; Suresh S. Ramalingam; David H. Lawson; Keith A. Delman; Bassel F. El-Rayes; Malania M. Wilson; H. Clifford Sullivan; Annie S. Morrison; Serdar Balci; N. Volkan Adsay; Anthony A. Gal; Gabriel Sica; Debra Saxe; Karen P. Mann; Charles E. Hill; Fadlo R. Khuri; Michael R. Rossi

We tested and clinically validated a targeted next-generation sequencing (NGS) mutation panel using 80 formalin-fixed, paraffin-embedded (FFPE) tumor samples. Forty non-small cell lung carcinoma (NSCLC), 30 melanoma, and 30 gastrointestinal (12 colonic, 10 gastric, and 8 pancreatic adenocarcinoma) FFPE samples were selected from laboratory archives. After appropriate specimen and nucleic acid quality control, 80 NGS libraries were prepared using the Illumina TruSight tumor (TST) kit and sequenced on the Illumina MiSeq. Sequence alignment, variant calling, and sequencing quality control were performed using vendor software and laboratory-developed analysis workflows. TST generated ≥500× coverage for 98.4% of the 13,952 targeted bases. Reproducible and accurate variant calling was achieved at ≥5% variant allele frequency with 8 to 12 multiplexed samples per MiSeq flow cell. TST detected 112 variants overall, and confirmed all known single-nucleotide variants (n = 27), deletions (n = 5), insertions (n = 3), and multinucleotide variants (n = 3). TST detected at least one variant in 85.0% (68/80), and two or more variants in 36.2% (29/80), of samples. TP53 was the most frequently mutated gene in NSCLC (13 variants; 13/32 samples), gastrointestinal malignancies (15 variants; 13/25 samples), and overall (30 variants; 28/80 samples). BRAF mutations were most common in melanoma (nine variants; 9/23 samples). Clinically relevant NGS data can be obtained from routine clinical FFPE solid tumor specimens using TST, benchtop instruments, and vendor-supplied bioinformatics pipelines.


Cancer | 2013

Excision repair cross‐complementing gene‐1, ribonucleotide reductase subunit M1, ribonucleotide reductase subunit M2, and human equilibrative nucleoside transporter‐1 expression and prognostic value in biliary tract malignancy

Sarah B. Fisher; Kevin E. Fisher; Sameer H. Patel; Matthew Lim; David A. Kooby; Bassel F. El-Rayes; Charles A. Staley; N. Volkan Adsay; Alton B. Farris; Shishir K. Maithel

Tumor expression of excision cross‐complementing gene‐1 (ERCC1), human equilibrative nucleoside transporter 1 (hENT1), ribonucleotide reductase subunit M1 (RRM1), and ribonucleotide reductase subunit M2 (RRM2), is associated with the efficacy of platinum and gemcitabine chemotherapy. The authors of this report recently demonstrated that high ERCC1 and RRM2 expression levels are independent negative prognostic markers for survival in early stage pancreas cancer. The differential expression and prognostic value of these biomarkers in biliary tract malignancy (BTM) is unknown.


Modern Pathology | 2014

Gene expression profiling of clear cell papillary renal cell carcinoma: comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma

Kevin E. Fisher; Qiqin Yin-Goen; Dianne Alexis; Joseph S Sirintrapun; William Harrison; R. Benjamin Isett; Michael R. Rossi; Carlos S. Moreno; Andrew N. Young; Adeboye O. Osunkoya

Clear cell papillary renal cell carcinoma is a distinct variant of renal cell carcinoma that shares some overlapping histological and immunohistochemical features of clear cell renal cell carcinoma and papillary renal cell carcinoma. Although the clear cell papillary renal cell carcinoma immunohistochemical profile is well described, clear cell papillary renal cell carcinoma mRNA expression has not been well characterized. We investigated the clear cell papillary renal cell carcinoma gene expression profile using previously identified candidate genes. We selected 17 clear cell papillary renal cell carcinoma, 15 clear cell renal cell carcinoma, and 13 papillary renal cell carcinoma cases for molecular analysis following histological review. cDNA from formalin-fixed paraffin-embedded tissue was prepared. Quantitative real-time PCR targeting alpha-methylacyl coenzyme-A racemase (AMACR), BMP and activin membrane-bound inhibitor homolog (BAMBI), carbonic anhydrase IX (CA9), ceruloplasmin (CP), nicotinamide N-methyltransferase (NNMT), schwannomin-interacting protein 1 (SCHIP1), solute carrier family 34 (sodium phosphate) member 2 (SLC34A2), and vimentin (VIM) was performed. Gene expression data were normalized relative to 28S ribosomal RNA. Clear cell papillary renal cell carcinoma expressed all eight genes at variable levels. Compared with papillary renal cell carcinoma, clear cell papillary renal cell carcinoma expressed more CA9, CP, NNMT, and VIM, less AMACR, BAMBI, and SLC34A2, and similar levels of SCHIP1. Compared with clear cell renal cell carcinoma, clear cell papillary renal cell carcinoma expressed slightly less NNMT, but similar levels of the other seven genes. Although clear cell papillary renal cell carcinoma exhibits a unique molecular signature, it expresses several genes at comparable levels to clear cell renal cell carcinoma relative to papillary renal cell carcinoma. Understanding the molecular pathogenesis of clear cell papillary renal cell carcinoma will have a key role in future sub-classifications of this unique tumor.


Journal of Surgical Oncology | 2014

HER2 in resected gastric cancer: Is there prognostic value?

Sarah B. Fisher; Kevin E. Fisher; Malcolm H. Squires; Sameer H. Patel; David A. Kooby; Bassel F. El-Rayes; Kenneth Cardona; Maria C. Russell; Charles A. Staley; Alton B. Farris; Shishir K. Maithel

The role of HER2 in patients with early stage/resected gastric cancer is controversial. This study investigates the prevalence and prognostic value of HER2 in patients undergoing curative intent resection for gastric adenocarcinoma.


Cancer | 2013

Differential expression and prognostic value of ERCC1 and thymidylate synthase in resected gastric adenocarcinoma

Malcolm H. Squires; Sarah B. Fisher; Kevin E. Fisher; Sameer H. Patel; David A. Kooby; Bassel F. El-Rayes; Charles A. Staley; Alton B. Farris; Shishir K. Maithel

Excision repair cross‐complementing gene‐1 (ERCC1) and thymidylate synthase (TS) are key regulatory enzymes whose expression patterns are associated with overall survival (OS) in several malignancies. Their expression patterns and prognostic value in resected gastric adenocarcinoma (GAC) are not known.


Applied Immunohistochemistry & Molecular Morphology | 2014

Immunohistochemical Investigation of BRAF p.V600E Mutations in Thyroid Carcinoma Using 2 Separate BRAF Antibodies

Kevin E. Fisher; Stewart G. Neill; Laleh Ehsani; Shelley Caltharp; Momin T. Siddiqui; Cynthia Cohen

Background:Approximately 45% of papillary thyroid carcinomas harbor BRAF p.V600E mutations and current practice algorithms endorse molecular testing for BRAF p.V600E. We assessed the utility of immunohistochemistry to detect BRAF p.V600E mutations in thyroid carcinomas using 2 separate BRAF monoclonal antibodies: one that detects both mutant and wild-type protein (pan-BRAF) and another that detects only the mutant protein (mut-BRAF). Methods:We selected 41 formalin-fixed paraffin-embedded thyroid carcinomas (29 papillary, 1 follicular, 7 medullary, and 4 anaplastic) from 37 thyroidectomies and 4 fine-needle aspirations. Immunohistochemistry was performed using a pan-BRAF (clone EP152Y) or a mut-BRAF (clone VE1) monoclonal antibody. Tumors were considered positive if >10% of neoplastic cells showed moderate (2+) or strong (3+) cytoplasmic staining. BRAF p.V600E mutations were confirmed by molecular pyrosequencing, the gold standard for statistical analysis. Results:pan-BRAF reactivity was observed in 80.5% (n=33) of cases: 34.1% (n=14) harbored BRAF p.V600E mutations and 46.3% (n=19) were wild type. mut-BRAF reactivity was observed in 46.3% (n=19) of cases: 34.1% (n=14) harbored BRAF p.V600E mutations and 12.2% (n=5) were wild type. The pan-BRAF antibody detected 14 more false positives (specificity: 29.6%, PPV: 42.4%) compared with the mut-BRAF antibody (specificity: 61.5%, PPV: 73.7%), but both antibodies detected the same 5 false positives. No false negatives were detected with either antibody (sensitivity and NPV 100.0% for both). Conclusions:The suboptimal specificity and PPV limits the diagnostic utility of both antibodies to reliably detect BRAF p.V600E mutations in thyroid carcinoma. However, both antibodies provide excellent sensitivity and NPV and either could be used to exclude BRAF wild-type thyroid carcinomas before molecular testing.


Applied Immunohistochemistry & Molecular Morphology | 2015

The role of immunohistochemical analysis in the evaluation of EML4-ALK gene rearrangement in lung cancer

Harold C. Sullivan; Kevin E. Fisher; Anne L. Hoffa; Jason Wang; Debra Saxe; Momin T. Siddiqui; Cynthia Cohen

Background:Among the mutations described in non–small cell lung carcinoma is a rearrangement resulting from an inversion within chromosome 2p leading to the formation of a fusion gene, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK). Fluorescence in situ hybridization (FISH) is the gold standard for the detection of ALK gene rearrangements. However, molecular methods are not readily available in all pathology laboratories. Immunohistochemistry (IHC) using an antibody directed against the EML4-ALK fusion protein provides a widely available alternative method of detection. We assessed whether IHC is a comparable and cost-effective alternative to FISH analysis for the detection of ALK gene rearrangements. Design:A total of 110 non–small cell lung carcinoma cases (63 surgical/biopsy and 47 cytology specimens), previously tested for ALK gene rearrangements by FISH [7 (6.4%) positive for the rearrangement], were probed for the EML4-ALK fusion protein using a monoclonal EML4-ALK antibody, clone 5A4. Cells were considered to stain positive for ALK if >5% of cells showed cytoplasmic staining of at least grade 1 intensity (scale: 0 to 3). A cost analysis was performed using ALK IHC as a screening test. Results:The sensitivity and specificity of the EML4-ALK IHC stain compared with ALK FISH analysis were 100% and 96%, respectively. All 7 FISH-positive cases stained positive by IHC, whereas 4 FISH-negative cases demonstrated positive staining. One of the 4 FISH-negative, IHC-positive cases harbored an EML4-ALK rearrangement by RT-PCR yielding 3 false-positive results overall. The &kgr; agreement between IHC and FISH methods is 0.76 (substantial/excellent). The potential savings of implementing the ALK IHC as a screening method would be

Collaboration


Dive into the Kevin E. Fisher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge