Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin F. Jones is active.

Publication


Featured researches published by Kevin F. Jones.


AIDS | 2001

P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance?

Kevin F. Jones; Patrick G. Bray; Saye Khoo; Ross A. Davey; E. Rhiannon Meaden; Stephen A. Ward; David Back

BackgroundThe multidrug transporters P-glycoprotein (P-gp) and MRP1 are functionally expressed in several subclasses of lymphocytes. HIV-1 protease inhibitors interact with both; consequently the transporters could reduce the local concentration of HIV-1 protease inhibitors and, thus, influence the selection of viral mutants. ObjectivesTo study the effect of the expression of P-gp and MRP1 on the transport and accumulation of HIV-1 protease inhibitors in human lymphocytes and to study the effects of specific P-gp and MRP1 inhibitors. MethodsThe initial rate and the steady-state intracellular accumulation of radiolabelled ritonavir, indinavir, saquinavir and nelfinavir was measured in three human lymphocyte cell lines: control CEM cells, CEM-MDR cells, which express 30-fold more P-gp than CEM cells, and CEM-MRP cells, which express fivefold more MRP1 protein than CEM cells. The effect of specific inhibitors of P-gp (GF 120918) and MRP1 (MK 571) was also examined. ResultsCompared with CEM cells, the initial rates of uptake and the steady-state intracellular concentrations of all protease inhibitors are significantly reduced in CEM-MDR cells. The intracellular concentrations of the protease inhibitors are increased upon co-administration with GF 120918, in some cases to levels approaching those in CEM cells. The intracellular concentrations of the protease inhibitors are also significantly reduced in CEM-MRP cells. Co-administration with MK -571 can partially overcome these effects. ConclusionsThe overexpression of multidrug transporters significantly reduces the accumulation of protease inhibitors at this major site of virus replication, which, potentially, could accelerate the acquisition of viral resistance. Targeted inhibition of P-gp may represent an important strategy by which this problem can be overcome.


AIDS | 2001

Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport.

Kevin F. Jones; Patrick G. Hoggard; Sean D. Sales; Saye Khoo; Ross A. Davey; David Back

ObjectivesTo investigate the intracellular accumulation of HIV protease inhibitors (PI) and to assess the effect of active transport on this accumulation. MethodsCEM cells were incubated with a PI for 18 h and the intracellular concentration determined using cell number and radioactivity. The effect of active transport was investigated using cells expressing P-glycoprotein (CEMVBL) and cells expressing multidrug resistance-associated protein 1 (MRP1; CEME1000). Incubations were also carried out at 4°C and in the presence of 2-deoxyglucose plus rotenone to examine the effect of inhibiting active transport. ResultsNelfinavir (NFV) accumulated to the greatest extent (> 80-fold) followed by saquinavir (SQV; ∼ 30-fold), ritonavir (RTV; 3–7-fold) and finally indinavir (IDV; extracellular equivalent to intracellular). In CEMVBL cells there was a significant reduction in the intracellular accumulation of NFV, SQV and RTV and in CEME1000 cells there was reduced accumulation of SQV and RTV. Inhibition of active transport processes caused a reduction in SQV and RTV accumulation but had no effect on IDV accumulation in all cell types. NFV accumulation was increased in CEMVBLcells as a result of inhibition of active transport. ConclusionsMarked differences can be detected in the intracellular accumulation of HIV PI drugs in vitro. Both P-glycoprotein and MRP1 may play a role in limiting the intracellular concentration of the PI and active influx mechanisms may contribute to drug accumulation.


Antiviral Research | 2006

Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses.

Tove' C. Bolken; Sylvie Laquerre; Yuanming Zhang; Thomas R. Bailey; Daniel C. Pevear; Shirley S. Kickner; Lindsey E. Sperzel; Kevin F. Jones; Travis K. Warren; S. Amanda Lund; Dana L. Kirkwood-Watts; David S. King; Amy C. Shurtleff; Mary C. Guttieri; Yijun Deng; Maureen R. Bleam; Dennis E. Hruby

Abstract Category A arenaviruses as defined by the National Institute of Allergy and Infectious Diseases (NIAID) are human pathogens that could be weaponized by bioterrorists. Many of these deadly viruses require biosafety level-4 (BSL-4) containment for all laboratory work, which limits traditional laboratory high-throughput screening (HTS) for identification of small molecule inhibitors. For those reasons, a related BSL-2 New World arenavirus, Tacaribe virus, 67–78% identical to Junín virus at the amino acid level, was used in a HTS campaign where approximately 400,000 small molecule compounds were screened in a Tacaribe virus-induced cytopathic effect (CPE) assay. Compounds identified in this screen showed antiviral activity and specificity against not only Tacaribe virus, but also the Category A New World arenaviruses (Junín, Machupo, and Guanarito). Drug resistant variants were isolated, suggesting that these compounds act through inhibition of a viral protein, the viral glycoprotein (GP2), and not through cellular toxicity mechanisms. A lead compound, ST-294, has been chosen for drug development. This potent and selective compound, with good bioavailability, demonstrated protective anti-viral efficacy in a Tacaribe mouse challenge model. This series of compounds represent a new class of inhibitors that may warrant further development for potential inclusion in a strategic stockpile.


Antimicrobial Agents and Chemotherapy | 2002

Intracellular Accumulation of Human Immunodeficiency Virus Protease Inhibitors

Saye Khoo; Patrick G. Hoggard; Ian Williams; E. Rhiannon Meaden; Philippa Newton; E Wilkins; Alan Smith; John Tjia; Judy Lloyd; Kevin F. Jones; Nicholas J. Beeching; P. Carey; Barry Peters; David Back

ABSTRACT Intracellular accumulation of the protease inhibitors (PIs) saquinavir (SQV), ritonavir (RTV), and indinavir (IDV) was determined in 50 human immunodeficiency virus-positive patients. Following extraction, PIs were quantified by mass spectrometry. Paired plasma and intracellular samples were collected over a full dosing interval from patients (13 on SQV, 6 on RTV, 8 on IDV, 16 on SQV plus RTV, 7 on IDV plus RTV) with a plasma viral load of <400 copies/ml. Data were expressed as intracellular/plasma drug concentration ratios. A hierarchy of intracellular accumulation was demonstrated by the following medians: 9.45 for SQV > 1.00 for RTV > 0.51 for IDV. Coadministration of RTV did not boost ratios of SQV or IDV within the cell or in plasma, although absolute plasma and intracellular SQV concentrations were increased by RTV. Seven individuals receiving SQV in hard-gel capsule form (median, 32 months) had higher intracellular/plasma drug ratios than all other patients receiving SQV (median, 17.62 versus 4.83; P = 0.04), despite consistently low plasma SQV concentrations. How this occurs may provide insight into the mechanisms that limit adequate drug penetration into sanctuary sites.


Journal of Virology | 2008

Vaccination of BALB/c Mice with Escherichia coli-Expressed Vaccinia Virus Proteins A27L, B5R, and D8L Protects Mice from Lethal Vaccinia Virus Challenge

Aklile Berhanu; Rebecca L. Wilson; Dana L. Kirkwood-Watts; David S. King; Travis K. Warren; Susan Amanda Lund; Lindsay L. Brown; Alex K. Krupkin; Erin VanderMay; Will Weimers; Kady M. Honeychurch; Douglas W. Grosenbach; Kevin F. Jones; Dennis E. Hruby

ABSTRACT The potential threat of smallpox use in a bioterrorist attack has heightened the need to develop an effective smallpox vaccine for immunization of the general public. Vaccination with the current smallpox vaccine, Dryvax, produces protective immunity but may result in adverse reactions for some vaccinees. A subunit vaccine composed of protective vaccinia virus proteins should avoid the complications arising from live-virus vaccination and thus provide a safer alternative smallpox vaccine. In this study, we assessed the protective efficacy and immunogenicity of a multisubunit vaccine composed of the A27L and D8L proteins from the intracellular mature virus (IMV) form and the B5R protein from the extracellular enveloped virus (EEV) form of vaccinia virus. BALB/c mice were immunized with Escherichia coli-produced A27L, D8L, and B5R proteins in an adjuvant consisting of monophosphoryl lipid A and trehalose dicorynomycolate or in TiterMax Gold adjuvant. Following immunization, mice were either sacrificed for analysis of immune responses or lethally challenged by intranasal inoculation with vaccinia virus strain Western Reserve. We observed that three immunizations either with A27L, D8L, and B5R or with the A27L and B5R proteins alone induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Several linear B-cell epitopes within the three proteins were recognized by sera from the immunized mice. In addition, protein-specific cellular responses were detected in spleens of immunized mice by a gamma interferon enzyme-linked immunospot assay using peptides derived from each protein. Our data suggest that a subunit vaccine incorporating bacterially expressed IMV- and EEV-specific proteins can be effective in stimulating anti-vaccinia virus immune responses and providing protection against lethal virus challenge.


Infection and Immunity | 2006

Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence.

Rebecca L. Wilson; Lindsay L. Brown; Dana L. Kirkwood-Watts; Travis K. Warren; S. Amanda Lund; David S. King; Kevin F. Jones; Dennis E. Hruby

ABSTRACT The HtrA serine protease has been shown to be essential for bacterial virulence and for survival after exposure to many types of environmental and cellular stresses. A Listeria monocytogenes 10403S htrA mutant was found to be sensitive to oxidative and puromycin-induced stress at high temperatures, showed a reduced ability to form biofilms, and was attenuated for virulence in mice.


Antiviral Research | 2011

Evaluation of Lassa antiviral compound ST-193 in a guinea pig model.

Kathleen A. Cashman; Mark A. Smith; Nancy A. Twenhafel; Ryan A. Larson; Kevin F. Jones; Robert D. Allen; Dongcheng Dai; Jarasvech Chinsangaram; Tove' C. Bolken; Dennis E. Hruby; Sean M. Amberg; Lisa E. Hensley; Mary C. Guttieri

Abstract Lassa virus (LASV), a member of the Arenaviridae family, causes a viral hemorrhagic fever endemic to West Africa, where as many as 300,000 infections occur per year. Presently, there are no FDA-approved LASV-specific vaccines or antiviral agents, although the antiviral drug ribavirin has shown some efficacy. A recently identified small-molecule inhibitor of arenavirus entry, ST-193, exhibits submicromolar antiviral activity in vitro. To determine the antiviral utility of ST-193 in vivo, we tested the efficacy of this compound in the LASV guinea pig model. Four groups of strain 13 guinea pigs were administered 25 or 80mg/kg ST-193, 25mg/kg of ribavirin, or the vehicle by the intraperitoneal (i.p.) route before infection with a lethal dose of LASV, strain Josiah, and continuing once daily for 14 days. Control animals exhibited severe disease, becoming moribund between days 10 and 15 postinfection. ST-193-treated animals exhibited fewer signs of disease and enhanced survival when compared to the ribavirin or vehicle groups. Body temperatures in all groups were elevated by day 9, but returned to normal by day 19 postinfection in the majority of ST-193-treated animals. ST-193 treatment mediated a 2–3-log reduction in viremia relative to vehicle-treated controls. The overall survival rate for the ST-193-treated guinea pigs was 62.5% (10/16) compared with 0% in the ribavirin (0/8) and vehicle (0/7) groups. These data suggest that ST-193 may serve as an improved candidate for the treatment of Lassa fever.


Antimicrobial Agents and Chemotherapy | 2002

Development of Enzymatic Assays for Quantification of Intracellular Lamivudine and Carbovir Triphosphate Levels in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus-Infected Patients

Stephen Kewn; Patrick G. Hoggard; Sean D. Sales; Kevin F. Jones; Bridget Maher; Saye Khoo; David Back

ABSTRACT In this paper, we describe the development and use of enzymatic assays to determine intracellular lamivudine triphosphate (3TCTP) and carbovir triphosphate (CBVTP) concentrations in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus (HIV)-infected patients. The assays involve inhibition of HIV reverse transcriptase (RT), which normally incorporates radiolabeled deoxynucleoside triphosphates into a synthetic template primer. For the 3TCTP assay, a preincubation procedure was added whereby 3TCTP becomes incorporated before [3H]dCTP. At a 1:400 template primer dilution, control product formation was reduced by 88.0% with 0.8 pmol of 3TCTP. Standard 3TCTP inhibition curves were performed using this procedure. For the CBVTP assay, 0.1 pmol of CBVTP inhibited control product formation with and without the use of a preincubation step, so inhibition curves were constructed using both procedures. However, reduced template primer stability with assays using preincubation steps led to a single-incubation procedure being adopted for future studies. The presence of PBMC extracts interfered with the 3TCTP assay. However, this was overcome by the addition of CuSO4. PBMC extracts did not interfere with the CBVTP assay. Intracellular 3TCTP and CBVTP concentrations were determined in PBMCs from HIV-infected patients over 24 h or greater. Peak concentrations were obtained 6 to 8 h after dosing, and the half-lives of the anabolites suggested the possibility of once-daily dosing. These assays are currently being used for determination of 3TCTP and CBVTP concentrations in clinical studies.


Antimicrobial Agents and Chemotherapy | 2013

Novel Benzoxazole Inhibitor of Dengue Virus Replication That Targets the NS3 Helicase

Chelsea M. Byrd; Douglas W. Grosenbach; Aklile Berhanu; Dongcheng Dai; Kevin F. Jones; Kara B. Cardwell; Christine Schneider; Guang Yang; Shanthakumar R. Tyavanagimatt; Chris Harver; Kristin A. Wineinger; Jessica Page; Eric Stavale; Melialani A. Stone; Kathleen P. Fuller; Candace Lovejoy; Janet M. Leeds; Dennis E. Hruby; Robert Jordan

ABSTRACT Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.


Vaccine | 2010

Impact of ST-246® on ACAM2000™ smallpox vaccine reactogenicity, immunogenicity, and protective efficacy in immunodeficient mice

Aklile Berhanu; David S. King; Stacie Mosier; Robert Jordan; Kevin F. Jones; Dennis E. Hruby; Douglas W. Grosenbach

Although a highly effective vaccine against smallpox, vaccinia virus (VV) is not without adverse events, some of which can be life-threatening, particularly in immunocompromised individuals. We have recently demonstrated that the immunogenicity and protective efficacy of Dryvax(®) in immunocompetent mice is preserved even when co-administered with ST-246, an orally bioavailable small-molecule inhibitor of orthopoxvirus egress and dissemination. In addition, ST-246 markedly reduced the reactogenicity of the smallpox vaccine ACAM2000 and the highly neurovirulent VV strain Western Reserve (VV-WR). Here, we evaluated the impact of ST-246 co-administration on ACAM2000 reactogenicity, immunogenicity, and protective efficacy in seven murine models of varying degrees of humoral and cellular immunodeficiency: BALB/c and B-cell deficient (JH-KO) mice depleted of CD4(+) or CD8(+) or both subsets of T cells. We observed that ST-246 reduced vaccine lesion severity and time to complete resolution in all of the immunodeficient models examined, except in those lacking both CD4(+) and CD8(+) T cells. Although VV-specific humoral responses were moderately reduced by ST-246 treatment, cellular responses were generally comparable or slightly enhanced at both 1 and 6 months post-vaccination. Most importantly, in those models in which vaccination given alone conferred protection against lethal VV challenge, similar levels of protection were observed at both time points when vaccination was given with ST-246. These data suggest that, with the exception of individuals with irreversible, combined CD4(+) and CD8(+) T-cell deficiency, ST-246 co-administered at the time of vaccination may help reduce vaccine reactogenicity--even in those lacking humoral immunity--without impeding the induction of protective immunity.

Collaboration


Dive into the Kevin F. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis K. Warren

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Back

University of Liverpool

View shared research outputs
Researchain Logo
Decentralizing Knowledge