Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin F. Sullivan is active.

Publication


Featured researches published by Kevin F. Sullivan.


Cell | 2003

Centromeres and Kinetochores: From Epigenetics to Mitotic Checkpoint Signaling

Don W. Cleveland; Yinghui Mao; Kevin F. Sullivan

The centromere is a chromosomal locus that ensures delivery of one copy of each chromosome to each daughter at cell division. Efforts to understand the nature and specification of the centromere have demonstrated that this central element for ensuring inheritance is itself epigenetically determined. The kinetochore, the protein complex assembled at each centromere, serves as the attachment site for spindle microtubules and the site at which motors generate forces to power chromosome movement. Unattached kinetochores are also the signal generators for the mitotic checkpoint, which arrests mitosis until all kinetochores have correctly attached to spindle microtubules, thereby representing the major cell cycle control mechanism protecting against loss of a chromosome (aneuploidy).


Journal of Clinical Investigation | 1991

LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase.

Michael P. Manns; Keith J. Griffin; Kevin F. Sullivan; Eric F. Johnson

LKM-1 autoantibodies, which are associated with autoimmune chronic active hepatitis, recognize P450IID6, a cytochrome P-450 monooxygenase. The reactivities of 26 LKM-1 antisera were tested with a panel of deletion mutants of P450IID6 expressed in Escherichia coli. 22 sera recognize a 33-amino acid segment of P450IID6, and 11 of these recognize a shorter segment, DPAQPPRD. PAQPPR is also found in IE175 of herpes simplex virus type 1 (HSV-1). Antibodies for HSV-1 proteins were detected by ELISA in 17 of 20 LKM-1 sera tested. An immobilized, synthetic peptide, DPAQPPRDC, was used to purify LKM-1 antibodies. Affinity purified LKM-1 autoantibodies react on immunoblots with a protein in BHK cells after infection with HSV-1. 11 of 24 LKM-1 sera, including 3 that recognize DPAQPPRD, also exhibit antibodies to the hepatitis C virus (HCV) protein, C100-3. Affinity purified LKM-1 antibodies did not recognize C100-3. However, partial sequence identity was evident between portions of the immunopositive 33-amino acid segment of P450IID6 and other portions of the putative HCV polyprotein. Immune cross-recognition of P450IID6 and HCV or HSV-1 proteins may contribute to the occurrence of LKM-1 autoantibodies.


Nature Cell Biology | 2000

CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint.

Xuebiao Yao; Ariane Abrieu; Yun Zheng; Kevin F. Sullivan; Don W. Cleveland

Here we show that suppression of synthesis of the microtubule motor CENP-E (centromere-associated protein E), a component of the kinetochore corona fibres of mammalian centromeres, yields chromosomes that are chronically mono-orientated, with spindles that are flattened along the plane of the substrate. Despite apparently normal microtubule numbers and the continued presence at kinetochores of other microtubule motors, spindle poles fragment in the absence of CENP-E, which implicates this protein in delivery of components from kinetochores to poles. CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signalling cascade, as depletion of this motor leads to profound checkpoint activation, whereas immunoprecipitation reveals a nearly stoichiometric association of CENP-E with the checkpoint kinase BubR1 during mitosis.


Journal of Clinical Investigation | 1989

Major antigen of liver kidney microsomal autoantibodies in idiopathic autoimmune hepatitis is cytochrome P450db1.

Michael P. Manns; Eric F. Johnson; Keith J. Griffin; Eng M. Tan; Kevin F. Sullivan

Type 1, liver kidney microsomal autoantibodies (LKM-1) are associated with a subgroup of idiopathic autoimmune type, chronic active hepatitis (CAH). The antigenic specificity of LKM-1 autoantibodies from 13 patients was investigated by immunoblot analysis of human liver microsomal proteins. Polypeptides of 50, 55, and 64 kD were detected with these antisera. A high titer LKM-1 serum was selected to screen a human liver lambda gt11 cDNA expression library, resulting in the isolation of several complementary (c)DNA clones. Autoantibodies affinity purified from proteins expressed by two of the immunopositive cDNA clones, HLD8.2 and HLD13.2, specifically react with a 50-kD protein of human liver microsomes and display immunofluorescence staining of the proximal renal tubular epithelia characteristic of LKM-1 sera. Determination of the sequence of HLD8.2 revealed that it encodes a recently described cytochrome P450db1. A bacterial fusion protein constructed from HLD8.2 proved to be a specific and sensitive diagnostic reagent. All sera from patients with LKM-1 positive liver disease react with this fusion protein. No reaction was seen, however, for sera from patients with other types of autoimmune liver diseases, viral hepatitis, systemic immunological disorders, or healthy controls.


Current Biology | 1997

Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres

Peter E. Warburton; Carol A. Cooke; Sylvie Bourassa; Omid Vafa; Beth A. Sullivan; Gail Stetten; Giorgio Gimelli; Dorothy Warburton; Chris Tyler-Smith; Kevin F. Sullivan; Guy G. Poirier; William C. Earnshaw

The trilaminar kinetochore directs the segregation of chromosomes in mitosis and meiosis. Despite its importance, the molecular architecture of this structure remains poorly understood [1]. The best known component of the kinetochore plates is CENP-C, a protein that is required for kinetochore assembly [2], but whose molecular role in kinetochore structure and function is unknown. Here we have raised for the first time monospecific antisera to CENP-A [3], a 17 kD centromere-specific histone variant that is 62% identical to the carboxy-terminal domain of histone H3 [4,5] and that resembles the yeast centromeric component CSE4 [6]. We have found by simultaneous immunofluorescence with centromere antigens of known ultrastructural location that CENP-A is concentrated in the region of the inner kinetochore plate at active centromeres. Because CENP-A was previously shown to co-purify with nucleosomes [7], our data suggest a specific nucleosomal substructure for the kinetochore. In human cells, these kinetochore-specific nucleosomes are enriched in alpha-satellite DNA [8]. However, the association of CENP-A with neocentromeres lacking detectable alpha-satellite DNA, and the lack of CENP-A association with alpha-satellite-rich inactive centromeres of dicentric chromosomes together suggest that CENP-A association with kinetochores is unlikely to be determined solely by DNA sequence recognition. We speculate that CENP-A binding could be a consequence of epigenetic tagging of mammalian centromeres.


Journal of Cell Biology | 2001

CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis

Zeitlin Sg; Richard D. Shelby; Kevin F. Sullivan

Aurora B is a mitotic protein kinase that phosphorylates histone H3, behaves as a chromosomal passenger protein, and functions in cytokinesis. We investigated a role for Aurora B with respect to human centromere protein A (CENP-A), a centromeric histone H3 homologue. Aurora B concentrates at centromeres in early G2, associates with histone H3 and centromeres at the times when histone H3 and CENP-A are phosphorylated, and phosphorylates histone H3 and CENP-A in vitro at a similar target serine residue. Dominant negative phosphorylation site mutants of CENP-A result in a delay at the terminal stage of cytokinesis (cell separation). The only molecular defects detected in analysis of 22 chromosomal, spindle, and regulatory proteins were disruptions in localization of inner centromere protein (INCENP), Aurora B, and a putative partner phosphatase, PP1γ1. Our data support a model where CENP-A phosphorylation is involved in regulating Aurora B, INCENP, and PP1γ1 targeting within the cell. These experiments identify an unexpected role for the kinetochore in regulation of cytokinesis.


Clinical Immunology and Immunopathology | 1988

Antinuclear antibodies (ANAs): diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity

Eng M. Tan; Edward K.L. Chan; Kevin F. Sullivan; Robert L. Rubin

The convergence of studies in the clinical and basic sciences has resulted in the definitive identification of many intracellular antigens which are the targets of autoantibodies in patients with systemic lupus erythematosus, scleroderma, dermatomyositis/polymyositis, Sjogrens syndrome, mixed connective tissue disease, and drug-induced autoimmunity. Some of this new knowledge includes the identification of the Sm and RNP antigens as ribonucleoprotein particles involved in splicing of precursor messenger RNA, Scl-70 as DNA topoisomerase I, proliferating cell nuclear antigen as auxiliary protein of DNA polymerase delta, and certain antigens in myositis as aminoacyl transfer RNA synthetases. This information confirms, at a molecular level, the presence of specific profiles of autoimmune responses so that autoantibodies can be used in clinical medicine as diagnostically useful immune markers. In addition the data give compelling reasons to consider that certain autoimmune diseases are antigen-driven. Many auto-antibodies have the interesting feature of recognizing epitopes on the antigens which are active or functional sites of the molecule. It is suggested that the data provide clues to the nature of the intracellular particle initiating the immune response and may help to elucidate some of the early mechanisms of the autoimmune process.


Journal of Clinical Investigation | 1989

Isolation and characterization of a cDNA clone encoding the 60-kD component of the human SS-A/Ro ribonucleoprotein autoantigen.

Eldad Ben-Chetrit; B J Gandy; Eng M. Tan; Kevin F. Sullivan

SS-A/Ro is a nucleocytoplasmic ribonucleoprotein (RNP) particle that is a common target of autoimmune response in Sjögrens syndrome (SS) and systemic lupus erythematosus (SLE). Previously, SS-A/Ro has been shown to be composed of at least two polypeptide antigens of 60 and 52 kD noncovalently associated with a set of small RNAs, designated Y1-Y5. A serum from an SS patient was selected to screen a lambda gt11 cDNA library constructed from human T cell lymphoblastic leukemia (MOLT-4) mRNA. An immunoreactive clone was isolated that possessed a 1.8-kb cDNA insert. In vitro transcription and translation of the cDNA resulted in the synthesis of a 57.5-kD polypeptide which was specifically immunoprecipitated by SS-A/Ro antisera. The identity of the cDNA encoded protein as the 60-kD SS-A/Ro antigen was established by proteolytic peptide mapping of the cDNA-encoded protein and the 60-kD HeLa cell antigen. The sequence of the cDNA shows that the 60-kD SS-A/Ro protein possesses both RNA binding protein consensus sequences and a single zinc-finger motif. Recombinant SS-A/Ro antigen produced in bacteria proved to be a sensitive and specific reagent for detection of anti-SS-A/Ro antibodies in patient sera. The availability of the 60-kD SS-A/Ro cDNA will enable detailed analysis of the molecular structure and function of the SS-A/Ro RNP particle and its role in autoimmune pathology.


Current Opinion in Genetics & Development | 2001

A solid foundation: functional specialization of centromeric chromatin.

Kevin F. Sullivan

Centromeres provide a distinctive mechanical function for the chromosomes as the site of kinetochore assembly and force generation in mitosis and meiosis. Recent studies show that a unique form of chromatin, based on the histone-H3-like protein CENP-A and homologues, provides a conserved foundation for this mechanical chromatin domain. CENP-A plays a role in templating kinetochore assembly and may be a central element in the epigenetic maintenance of centromere identity. Cohesion at the centromere, intimately linked to kinetochore assembly, is required for integrating spindle forces exerted across the centromere and for establishing the bipolar geometry of sister kinetochores.


Current Biology | 1997

Chromatin containing CENP-A and α-satellite DNA is a major component of the inner kinetochore plate

Omid Vafa; Kevin F. Sullivan

The pathway of molecular interactions leading to kinetochore assembly on mammalian chromosomes is unknown. Kinetochores could be specified by structural features of centromeric satellite DNA [1-3] or by specific DNA sequences, analogous to budding yeast centromeres, interspersed in centromeric satellite DNA arrays [4,5]. Alternatively, kinetochores could be epigenetic structures that replicate without strict dependence on DNA sequence [6-8]. We purified kinetochore-associated chromatin from human chromosomes by immunoprecipitation of CENP-A, a centromere-specific histone H3 homologue located in the inner plate of the kinetochore [6,9,10]. Hybridization and DNA sequence analyses of cloned kinetochore DNA fragments revealed alpha-satellite as the predominant sequence associated with CENP-A. A major site of micrococcal nuclease digestion was identified by mapping the termini of alpha-satellite clones, suggesting that the inner kinetochore plate contains phased arrays of CENP-A-alpha-satellite nucleosomes. These experiments demonstrate for the first time that complex satellite DNA is a structural component of the kinetochore. Further, because complex satellite DNA is evolutionarily unconserved, these results suggest that molecular recognition events necessary for kinetochore formation take place at the level of DNA conformation or epigenetic mechanisms rather than DNA sequence per se.

Collaboration


Dive into the Kevin F. Sullivan's collaboration.

Top Co-Authors

Avatar

Eng M. Tan

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Shelby

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie Wilson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omid Vafa

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lisa Prendergast

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge