Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin F. Webb is active.

Publication


Featured researches published by Kevin F. Webb.


Journal of Immunology | 2011

Functional Gap Junctions Accumulate at the Immunological Synapse and Contribute to T Cell Activation

Ariadna Mendoza-Naranjo; Gerben Bouma; Cristián Pereda; Marcos Ramírez; Kevin F. Webb; Andrés Tittarelli; Mercedes N. López; Alexis M. Kalergis; Adrian J. Thrasher; David L. Becker; Flavio Salazar-Onfray

Gap junction (GJ) mediates intercellular communication through linked hemichannels from each of two adjacent cells. Using human and mouse models, we show that connexin 43 (Cx43), the main GJ protein in the immune system, was recruited to the immunological synapse during T cell priming as both GJs and stand-alone hemichannels. Cx43 accumulation at the synapse was Ag specific and time dependent, and required an intact actin cytoskeleton. Fluorescence recovery after photobleaching and Cx43-specific inhibitors were used to prove that intercellular communication between T cells and dendritic cells is bidirectional and specifically mediated by Cx43. Moreover, this intercellular cross talk contributed to T cell activation as silencing of Cx43 with an antisense or inhibition of GJ docking impaired intracellular Ca2+ responses and cytokine release by T cells. These findings identify Cx43 as an important functional component of the immunological synapse and reveal a crucial role for GJs and hemichannels as coordinators of the dendritic cell–T cell signaling machinery that regulates T cell activation.


Experimental Eye Research | 2009

Regulation of lens volume: implications for lens transparency.

Paul J. Donaldson; Kaa-Sandra N. Chee; Julie C. Lim; Kevin F. Webb

Lens transparency is critically dependent on the maintenance of an ordered tissue architecture, and disruption of this order leads to light scatter and eventually lens cataract. Hence the volume of the fiber cells that make up the bulk of the lens needs to be tightly regulated if lens transparency is to be preserved. While it has long been appreciated that the lens can regulate its volume when placed in anisosmotic solutions, recent work suggests that the lens also actively maintains its volume under steady-state conditions. Furthermore, the process of fiber cell elongation necessitates that differentiating fiber cells dramatically increase their volume in response to growth factors. The cellular transport mechanisms that mediate the regulation of fiber cell volume in the lens cortex are only just beginning to be elucidated. In this region, fiber cells are continuously undergoing a process of differentiation that creates an inherent gradient of cells at different stages of elongation. These cells express different complements of transport proteins involved in volume regulation. In addition, transport processes at different depths into the lens are differentially influenced by electrochemical gradients that alter with distance into the lens. Taken together, our work suggests that the lens has spatially distinct ion influx and efflux pathways that interact to control its steady-state volume, its response to hypotonic swelling, and the elongation of differentiating fibers. Based on this work, we present a model which may explain the unique damage phenotype observed in diabetic cataract, in terms of the uncoupling or dysregulation of these ion influx and efflux pathways.


American Journal of Physiology-cell Physiology | 2008

Differentiation-dependent changes in the membrane properties of fiber cells isolated from the rat lens

Kevin F. Webb; Paul J. Donaldson

Impedance measurements in whole lenses showed that lens fiber cells possess different permeability properties to the epithelial cells from which they differentiate. To confirm these observations at the cellular level, we analyzed the membrane properties of fiber cells isolated in the presence of the nonselective cation channel inhibitor Gd3+. Isolated fiber cells were viable in physiological [Ca2+] and exhibited a range of lengths that reflected their stage of differentiation. Analysis of a large population of fiber cells revealed a subgroup of cells whose conductivity matched values measured in the whole lens (1). In this group of cells, membrane resistance, conductivity, and reversal potential all varied with cell length, suggesting that the process of differentiation is associated with a change in the membrane properties of fiber cells. Using pharmacology and ion substitution experiments, we showed that newly differentiated fiber cells (<150 microm) contained variable combinations of Ba2+-and tetraethylammonium-sensitive K+ currents. Longer fiber cells (150-650 microm) were dominated by a lyotropic anion conductance, which also appears to plays a role in the intact lens. Longer cells also exhibited a low-level, nonselective conductance that was eliminated by the replacement of extracellular Na+ with N-methyl-d-glucamine, indicating that the lens contains both Gd3+-sensitive and -insensitive nonselective cation conductances. Fiber cell differentiation is therefore associated with a shift in membrane permeability from a dominant K+ conductance(s) toward larger contributions from anion and nonselective cation conductances as fiber cells elongate.


Applied Optics | 2015

Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells

Fernando Perez-Cota; Richard J. Smith; Emilia Moradi; Leonel Marques; Kevin F. Webb; Matt Clark

At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells.


Experimental Eye Research | 2008

Molecular and functional mapping of regional differences in P2Y receptor expression in the rat lens

Rebecca G. Hu; Haruna Suzuki-Kerr; Kevin F. Webb; Jeremy D. Rhodes; David J. Collison; G. Duncan; Paul J. Donaldson

Extracellular ATP has been shown to mobilize intracellular Ca(2+) in cultured ovine lens epithelial cells and in human lens epithelium, suggesting a role for purines in the modulation of lens transparency. In this study, we characterized the expression profiles of P2Y receptor isoforms throughout the rat lens at both the molecular and the functional levels. RT-PCR indicated that P2Y(1), P2Y(2), P2Y(4) and P2Y(6) are expressed in the lens, while P2Y(12), P2Y(13) and P2Y(14) are not. Immunohistochemistry, using isoform specific antibodies, indicated that the epithelium does not express P2Y(1) and P2Y(2), but that the underlying fiber cells, which differentiate from the epithelial cells, exhibit strong membranous labeling. Although co-expressed in fiber cells, differences in P2Y(1) and P2Y(2) expression were apparent. P2Y(1) expression extended deeper into the lens than P2Y(2), and its expression co-localized with Cx50 gap junction plaques, while P2Y(2) did not. Labeling for P2Y(4) and P2Y(6) receptors were observed in both epithelial cells and fiber cells, but the labeling was predominantly cytoplasmic in nature. While purine agonist (ATP, ADP, UTP and UDP) application to the lens induced mobilization of intracellular Ca(2+) in cortical fiber cells, little to no effect was observed in the anterior and equatorial epithelium. Thus the inability of UTP and UDP to mobilize intracellular Ca(2+) in the epithelium and the predominately cytoplasmic location of P2Y(4) and P2Y(6) suggests that these receptors may represent an inactive pool of receptors that may be activated under non-physiological conditions. In contrast, our results indicated that P2Y(1) and P2Y(2) are functionally active in fiber cells and their differential subcellular expression patterns suggest they may regulate distinct processes in the lens under steady state conditions.


The Journal of Physiology | 2007

Multiphoton imaging of chick retinal development in relation to gap junctional communication

David L. Becker; Kevin F. Webb; Christopher Thrasivoulou; Chih‐Chi Lin; Roxana Nadershahi; Niki Tsakiri; Jeremy E. Cook

Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S‐phase at its peak and then, on entering G2, returning towards the ventricular surface where it enters M‐phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells. Disrupting coupling with pharmacological agents, Cx43‐specific antisense oligodeoxynucleotides (asODNs) or dominant negative Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods, and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division and leads to their ectopic differentiation. The ability to perform extended time‐lapse imaging over 3D volumes in living retina using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium to be probed in detail.


Scientific Reports | 2016

High resolution 3D imaging of living cells with sub-optical wavelength phonons

Fernando Perez-Cota; Richard J. Smith; Emilia Moradi; Leonel Marques; Kevin F. Webb; Matt Clark

Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine.


Journal of the Acoustical Society of America | 2015

Optically excited nanoscale ultrasonic transducers

Richard J. Smith; Fernando Perez Cota; Leonel Marques; Xuesheng Chen; Ahmet Arca; Kevin F. Webb; Jonathan W. Aylott; Michael G. Somekh; Matt Clark

In order to work at higher ultrasonic frequencies, for instance, to increase the resolution, it is necessary to fabricate smaller and higher frequency transducers. This paper presents an ultrasonic transducer capable of being made at a very small size and operated at GHz frequencies. The transducers are activated and read optically using pulsed lasers and without physical contact between the instrumentation and the transducer. This removes some of the practical impediments of traditional piezoelectric architectures (such as wiring) and allows the devices to be placed immediately on or within samples, reducing the significant effect of attenuation which is very strong at frequencies above 1 GHz. The transducers presented in this paper exploit simultaneous optical and mechanical resonances to couple the optical input into ultrasonic waves and vice versa. This paper discusses the mechanical and optical design of the devices at a modest scale (a few μm) and explores the scaling of the transducers toward the sub-micron scale. Results are presented that show how the transducers response changes depending on its local environment and how the resonant frequency shifts when the transducer is loaded by a printed protein sample.


Scientific Reports | 2015

Sub-100 nm resolution microscopy based on proximity projection grating scheme

Feng Hu; Michael G. Somekh; Darren J. Albutt; Kevin F. Webb; Emilia Moradi; Chung W. See

Structured illumination microscopy (SIM) has been widely used in life science imaging applications. The maximum resolution improvement of SIM, compared to conventional bright field system is a factor of 2. Here we present an approach to structured illumination microscopy using the proximity projection grating scheme (PPGS), which has the ability to further enhance the SIM resolution without invoking any nonlinearity response from the sample. With the PPGS-based SIM, sub-100 nm resolution has been obtained experimentally, and results corresponding to 2.4 times resolution improvement are presented. Furthermore, it will be shown that an improvement of greater than 3 times can be achieved.


Journal of Microscopy | 2015

Condenser-free contrast methods for transmitted-light microscopy

Kevin F. Webb

Phase contrast microscopy allows the study of highly transparent yet detail‐rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser‐free yet highly effective method of obtaining phase contrast in transmitted‐light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light‐path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser‐free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser‐free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour‐contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser‐free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next‐generation transmitted‐light microscopy designs. The condenser‐free illumination method, using rings of independent or radially‐scanned emitters, may be exploited in future in other electromagnetic wavebands, including X‐rays or the infrared.

Collaboration


Dive into the Kevin F. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilia Moradi

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Matt Clark

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonel Marques

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung W. See

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge