Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin G. Hatala is active.

Publication


Featured researches published by Kevin G. Hatala.


PLOS ONE | 2013

Variation in Foot Strike Patterns during Running among Habitually Barefoot Populations

Kevin G. Hatala; Heather L. Dingwall; Roshna E. Wunderlich; Brian G. Richmond

Endurance running may have a long evolutionary history in the hominin clade but it was not until very recently that humans ran wearing shoes. Research on modern habitually unshod runners has suggested that they utilize a different biomechanical strategy than runners who wear shoes, namely that barefoot runners typically use a forefoot strike in order to avoid generating the high impact forces that would be experienced if they were to strike the ground with their heels first. This finding suggests that our habitually unshod ancestors may have run in a similar way. However, this research was conducted on a single population and we know little about variation in running form among habitually barefoot people, including the effects of running speed, which has been shown to affect strike patterns in shod runners. Here, we present the results of our investigation into the selection of running foot strike patterns among another modern habitually unshod group, the Daasanach of northern Kenya. Data were collected from 38 consenting adults as they ran along a trackway with a plantar pressure pad placed midway along its length. Subjects ran at self-selected endurance running and sprinting speeds. Our data support the hypothesis that a forefoot strike reduces the magnitude of impact loading, but the majority of subjects instead used a rearfoot strike at endurance running speeds. Their percentages of midfoot and forefoot strikes increased significantly with speed. These results indicate that not all habitually barefoot people prefer running with a forefoot strike, and suggest that other factors such as running speed, training level, substrate mechanical properties, running distance, and running frequency, influence the selection of foot strike patterns.


Proceedings of the Royal Society B: Biological Sciences | 2016

Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees

Kevin G. Hatala; Brigitte Demes; Brian G. Richmond

Bipedalism is a key adaptation that shaped human evolution, yet the timing and nature of its evolution remain unclear. Here we use new experimentally based approaches to investigate the locomotor mechanics preserved by the famous Pliocene hominin footprints from Laetoli, Tanzania. We conducted footprint formation experiments with habitually barefoot humans and with chimpanzees to quantitatively compare their footprints to those preserved at Laetoli. Our results show that the Laetoli footprints are morphologically distinct from those of both chimpanzees and habitually barefoot modern humans. By analysing biomechanical data that were collected during the human experiments we, for the first time, directly link differences between the Laetoli and modern human footprints to specific biomechanical variables. We find that the Laetoli hominin probably used a more flexed limb posture at foot strike than modern humans when walking bipedally. The Laetoli footprints provide a clear snapshot of an early hominin bipedal gait that probably involved a limb posture that was slightly but significantly different from our own, and these data support the hypothesis that important evolutionary changes to hominin bipedalism occurred within the past 3.66 Myr.


Scientific Reports | 2016

Footprints reveal direct evidence of group behavior and locomotion in Homo erectus

Kevin G. Hatala; Neil T. Roach; Kelly R. Ostrofsky; Roshna E. Wunderlich; Heather L. Dingwall; Brian Villmoare; David J. Green; John W. K. Harris; David R. Braun; Brian G. Richmond

Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus.


Scientific Reports | 2016

Pleistocene footprints show intensive use of lake margin habitats by Homo erectus groups

Neil T. Roach; Kevin G. Hatala; Kelly R. Ostrofsky; Brian Villmoare; Jonathan Reeves; Andrew Du; David R. Braun; John W. K. Harris; Anna K. Behrensmeyer; Brian G. Richmond

Reconstructing hominin paleoecology is critical for understanding our ancestors’ diets, social organizations and interactions with other animals. Most paleoecological models lack fine-scale resolution due to fossil hominin scarcity and the time-averaged accumulation of faunal assemblages. Here we present data from 481 fossil tracks from northwestern Kenya, including 97 hominin footprints attributed to Homo erectus. These tracks are found in multiple sedimentary layers spanning approximately 20 thousand years. Taphonomic experiments show that each of these trackways represents minutes to no more than a few days in the lives of the individuals moving across these paleolandscapes. The geology and associated vertebrate fauna place these tracks in a deltaic setting, near a lakeshore bordered by open grasslands. Hominin footprints are disproportionately abundant in this lake margin environment, relative to hominin skeletal fossil frequency in the same deposits. Accounting for preservation bias, this abundance of hominin footprints indicates repeated use of lakeshore habitats by Homo erectus. Clusters of very large prints moving in the same direction further suggest these hominins traversed this lakeshore in multi-male groups. Such reliance on near water environments, and possibly aquatic-linked foods, may have influenced hominin foraging behavior and migratory routes across and out of Africa.


Philosophical Transactions of the Royal Society B | 2016

The evolution of body size and shape in the human career

William L. Jungers; Mark Grabowski; Kevin G. Hatala; Brian G. Richmond

Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the ‘best’ for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus. The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans. This article is part of the themed issue ‘Major transitions in human evolution’.


Journal of Human Evolution | 2016

Interpreting locomotor biomechanics from the morphology of human footprints.

Kevin G. Hatala; Roshna E. Wunderlich; Heather L. Dingwall; Brian G. Richmond

Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprints overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the biomechanical patterns reflected by fossil hominin footprints by demonstrating the statistically significant effects of specific kinematic variables on patterns of variation in footprint topography.


Scientific Reports | 2016

Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture

Erin Marie Williams-Hatala; Kevin G. Hatala; S. Hiles; K. N. Rabey

Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.


Journal of Human Evolution | 2018

The manual pressures of stone tool behaviors and their implications for the evolution of the human hand

Erin Marie Williams-Hatala; Kevin G. Hatala; Mckenzie Gordon; Alastair J.M. Key; Margaret Kasper; Tracy L. Kivell

It is widely agreed that biomechanical stresses imposed by stone tool behaviors influenced the evolution of the human hand. Though archaeological evidence suggests that early hominins participated in a variety of tool behaviors, it is unlikely that all behaviors equally influenced modern human hand anatomy. It is more probable that a behaviors likelihood of exerting a selective pressure was a weighted function of the magnitude of stresses associated with that behavior, the benefits received from it, and the amount of time spent performing it. Based on this premise, we focused on the first part of that equation and evaluated magnitudes of stresses associated with stone tool behaviors thought to have been commonly practiced by early hominins, to determine which placed the greatest loads on the digits. Manual pressure data were gathered from 39 human subjects using a Novel Pliance® manual pressure system while they participated in multiple Plio-Pleistocene tool behaviors: nut-cracking, marrow acquisition with a hammerstone, flake production with a hammerstone, and handaxe and flake use. Manual pressure distributions varied significantly according to behavior, though there was a tendency for regions of the hand subject to the lowest pressures (e.g., proximal phalanges) to be affected less by behavior type. Hammerstone use during marrow acquisition and flake production consistently placed the greatest loads on the digits collectively, on each digit and on each phalanx. Our results suggest that, based solely on the magnitudes of stresses, hammerstone use during marrow acquisition and flake production are the most likely of the assessed behaviors to have influenced the anatomical and functional evolution of the human hand.


Proceedings of the Royal Society B: Biological Sciences | 2018

Pattern and process in hominin brain size evolution are scale-dependent

Andrew Du; Andrew Zipkin; Kevin G. Hatala; Elizabeth Renner; Jennifer L. Baker; Serena Bianchi; Kallista H. Bernal

A large brain is a defining feature of modern humans, yet there is no consensus regarding the patterns, rates and processes involved in hominin brain size evolution. We use a reliable proxy for brain size in fossils, endocranial volume (ECV), to better understand how brain size evolved at both clade- and lineage-level scales. For the hominin clade overall, the dominant signal is consistent with a gradual increase in brain size. This gradual trend appears to have been generated primarily by processes operating within hypothesized lineages—64% or 88% depending on whether one uses a more or less speciose taxonomy, respectively. These processes were supplemented by the appearance in the fossil record of larger-brained Homo species and the subsequent disappearance of smaller-brained Australopithecus and Paranthropus taxa. When the estimated rate of within-lineage ECV increase is compared to an exponential model that operationalizes generation-scale evolutionary processes, it suggests that the observed data were the result of episodes of directional selection interspersed with periods of stasis and/or drift; all of this occurs on too fine a timescale to be resolved by the current human fossil record, thus producing apparent gradual trends within lineages. Our findings provide a quantitative basis for developing and testing scale-explicit hypotheses about the factors that led brain size to increase during hominin evolution.


The 85th Annual Meeting of the American Association of Physical Anthropologists, Atlanta, GA | 2016

Wading, and seeing, through mud: A biplanar x-ray study of human foot motion and footprint formation within deformable substrates

Kevin G. Hatala; David Perry; Stephen M. Gatesy

Leprosy is one of the few specific infectious diseases that can be studied in bioarchaeology due to its characteristic debilitating and disfiguring skeletal changes. Leprosy has been, and continues to be, one of the most socially stigmatising diseases in history, over-riding all other aspects of social identity for the sufferers and frequently resulting in social exclusion. This study examines the stable isotopic evidence of mobility patterns of children, adolescents, and young adult individuals with the lepromatous form of leprosy in Medieval England (10 th –12 th centuries AD) to assess whether the individuals buried with the disease were non-locals, possibly from further afield. Enamel samples from 19 individuals from the St. Mary Magdalen Leprosy Hospital, Winchester (UK) were selected for strontium ( 87 Sr/ 86 6U DQG R[\JHQ į 18 O) stable isotope analysis based on age at death (<30 years), the presence of bone changes associated with lepromatous leprosy, and the underlying geology of their burial locations. The results from these data indicate that the St. Mary Magdalen Leprosy Hospital received an almost equal mixture of local and non-local individuals from further afield, including early pilgrims. At present, the St. Mary Magdalen Leprosy Hospital is the earliest dedicated leprosaria found within Britain and mobility studies such as these can help elucidate and test some of the broader historical notions and identities associated with the movements of those infected with the disease in Medieval England.

Collaboration


Dive into the Kevin G. Hatala's collaboration.

Top Co-Authors

Avatar

Brian G. Richmond

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian G. Richmond

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Du

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly R. Ostrofsky

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge