Kevin Heng
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Heng.
Monthly Notices of the Royal Astronomical Society | 2011
Kevin Heng; Kristen Menou; Peter J. Phillipps
The rapid pace of extrasolar planet discovery and characterization is legitimizing the study of their atmospheres via three-dimensional numerical simulations. The complexity of atmospheric modelling and its inherent non-linearity, together with the limited amount of data available, motivate model intercomparisons and benchmark tests. In the geophysical community, the Held–Suarez test is a standard benchmark for comparing dynamical core simulations of the Earth’s atmosphere with different solvers, based on statistically averaged flow quantities. In the present study, we perform analogues of the Held–Suarez test for tidally locked exoplanets with the Geophysical Fluid Dynamics Laboratory (GFDL) Princeton Flexible Modelling System (fms) by subjecting both the spectral and finite difference dynamical cores to a suite of tests, including the standard benchmark for the Earth, a hypothetical tidally locked Earth, a ‘shallow’ hot Jupiter model and a ‘deep’ model of HD 209458b. We find qualitative and quantitative agreement between the solvers for the Earth, tidally locked Earth and shallow hot Jupiter benchmarks, but the agreement is less than satisfactory for the deep model of HD 209458b. Further investigation reveals that closer agreement may be attained by arbitrarily adjusting the values of the horizontal dissipation parameters in the two solvers, but it remains the case that the magnitude of the horizontal dissipation is not easily specified from first principles. Irrespective of radiative transfer or chemical composition considerations, our study points to limitations in our ability to accurately model hot Jupiter atmospheres with meteorological solvers at the level of 10 per cent for the temperature field and several tens of per cent for the velocity field. Direct wind measurements should thus be particularly constraining for the models. Our suite of benchmark tests also provides a reference point for researchers wishing to adapt their codes to study the atmospheric circulation regimes of tidally locked Earths/Neptunes/Jupiters.
The Astrophysical Journal | 2013
Brice-Olivier Demory; Julien de Wit; Nikole K. Lewis; Jonathan J. Fortney; Andras Zsom; Sara Seager; Heather A. Knutson; Kevin Heng; Nikku Madhusudhan; Michaël Gillon; J.-M. Desert; Vivien Parmentier; Nicolas B. Cowan
We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7bs relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7bs visible flux cannot be due to thermal emission or Rayleigh scattering from H2 molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.
Monthly Notices of the Royal Astronomical Society | 2016
Tabetha S. Boyajian; Daryll LaCourse; Saul Rappaport; Daniel C. Fabrycky; Debra A. Fischer; Davide Gandolfi; Grant M. Kennedy; H. Korhonen; Michael C. Liu; A. Moór; Katalin Oláh; K. Vida; Mark C. Wyatt; William M. J. Best; John M. Brewer; F. Ciesla; B. Csak; H. J. Deeg; Trent J. Dupuy; G. Handler; Kevin Heng; Steve B. Howell; S. T. Ishikawa; József Kovács; T. Kozakis; L. Kriskovics; J. Lehtinen; Chris Lintott; Stuart Lynn; D. Nespral
TSB acknowledges support provided through NASA grant ADAP12-0172 and ADAP14-0245. MCW and GMK acknowledge the support of the European Union through ERC grant number 279973. The authors acknowledge support from the Hungarian Research Grants OTKA K-109276, OTKA K-113117, the Lendulet-2009 and Lendulet-2012 Program (LP2012-31) of the Hungarian Academy of Sciences, the Hungarian National Research, Development and Innovation Office – NKFIH K-115709, and the ESA PECS Contract No. 4000110889/14/NL/NDe. This work was supported by the Momentum grant of the MTA CSFK Lendulet Disc Research Group. GH acknowledges support by the Polish NCN grant 2011/01/B/ST9/05448. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research made use of The DASCH project; we are also grateful for partial support from NSF grants AST-0407380, AST-0909073, and AST-1313370. The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN). We thank Scott Dahm, Julie Rivera, and the Keck Observatory staff for their assistance with these observations. This research was supported in part by NSF grant AST-0909222 awarded to M. Liu. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. KS gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2_138979/1. HJD and DN acknowledge support by grant AYA2012-39346-C02-02 of the Spanish Secretary of State for R&D&i (MINECO). This paper makes use of data from the first public release of the WASP data (Butters et al. 2010) as provided by the WASP consortium and services at the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. This research made use of the SIMBAD and VIZIER Astronomical Databases, operated at CDS, Strasbourg, France (http://cdsweb.u-strasbg.fr/), and of NASAs Astrophysics Data System.
The Astrophysical Journal | 2011
Adam Burrows; Kevin Heng; Thane Nampaisarn
Employing realistic and consistent atmosphere boundary conditions, we have generated evolutionary models for brown dwarfs and very low mass stars (VLMs) for different atmospheric metallicities ([Fe/H]), with and without clouds. We find that the spread in radius at a given mass and age can be as large as ~10% to ~25%, with higher-metallicity, higher-cloud-thickness atmospheres resulting quite naturally in larger radii. For each 0.1 dex increase in [Fe/H], radii increase by ~1% to ~2.5%, depending upon the age and mass. We also find that, while for smaller masses and older ages brown dwarf radii decrease with increasing helium fraction (Y, as expected), for more massive brown dwarfs and a wide range of ages they increase with helium fraction. The increase in radius in going from Y = 0.25 to Y = 0.28 can be as large as ~0.025 R J (~2.5%). Furthermore, we find that for VLMs an increase in atmospheric metallicity from 0.0 to 0.5 dex, increases radii by ~4%, and from –0.5 to 0.5 dex by ~10%. Therefore, we suggest that opacity due to higher metallicity might naturally account for the apparent radius anomalies in some eclipsing VLM systems. Ten to twenty-five percent variations in radius exceed errors stemming from uncertainties in the equation of state alone. This serves to emphasize that transit and eclipse measurements of brown dwarf radii constrain numerous effects collectively, importantly including the atmosphere and condensate cloud models, and not just the equation of state. At all times, one is testing a multi-parameter theory, and not a universal radius–mass relation.
The Astrophysical Journal | 2013
T. Evans; F. Pont; David K. Sing; S. Aigrain; Joanna K. Barstow; J.-M. Desert; N. P. Gibson; Kevin Heng; Heather A. Knutson; Alain Lecavelier des Etangs
We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of Ag = 0.40 ± 0.12 across 290-450 nm and Ag < 0.12 across 450-570 nm at 1σ confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond ~450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.
The Astrophysical Journal | 2008
Matthew van Adelsberg; Kevin Heng; Richard McCray; John C. Raymond
Balmer-dominated shocks in supernova remnants (SNRs) produce strong hydrogen lines with a two-component profile composed of a narrow contribution from cold upstream hydrogen atoms and abroad contribution from hydrogen atoms that have undergone charge transfer reactions with hot protons. Observations of emission lines from edgewise shocks in SNRs can constrain the gas velocity and collisionless electron heating at the shock front. Downstream hydrogen atoms engage in charge transfer, excitation, and ionization reactions, defining an interaction region called the shock transition zone. The properties of hot hydrogen atoms produced by charge transfers (called broad neutrals) are critical for accurately calculating the structure and radiation from the shock transition zone. This paper is the third in a series describing the kinetic, fluid, and emission properties of Balmer-dominated shocks, and it is the first to properly treat the effect of broad neutral kinetics on the shock transition zone structure. We use our models to extract shock parameters from observations of Balmer-dominated SNRs. We find that the inferred shock velocities and electrontemperaturesarelower thanthoseof previouscalculations by 1500 km s � 1 . This effect is primarily due to the fact that excitation by proton collisions and charge transfer to excitedlevelsfavorthehigh-speedpartof theneutralhydrogenvelocitydistribution.Ourresultshaveastrongdependence on the ratio of the electron to proton temperatures, � � Te/Tp, which allows us to construct a relation � (vs) between the temperature ratio and the shock velocity.We compare our calculations to previous results byGhavamian and coworkers. Subject headingg shock waves — supernova remnants Online material: color figures
Publications of the Astronomical Society of Australia | 2010
Kevin Heng
A concise and critical review of Balmer-dominated shocks (BDSs) is presented, summarizing the state of theory and observations, including models with/without shock precursors and their synergy with atomic physics. Observations of BDSs in supernova remnants are reviewed on an object-by-object basis. The relevance of BDSs towards understanding the acceleration of cosmic rays in shocks is emphasized. Probable and possible detections of BDSs in astrophysical objects other than supernova remnants, including pulsar wind nebulae and high-redshift galaxies, are described. The case for the continued future of studying BDSs in astrophysics is made, including their relevance towards understanding electron–ion temperature equilibration in collisionless shocks.
Monthly Notices of the Royal Astronomical Society | 2012
Kevin Heng; Wolfgang Hayek; F. Pont; David K. Sing
Motivated by the work of Guillot, we present a semi-analytical formalism for calculating the temperature–pressure profiles in hot Jovian atmospheres which includes the effects of clouds/hazes and collision-induced absorption. Using the dual-band approximation, we assume that stellar irradiation and thermal emission from the hot Jupiter occur at distinct wavelengths (‘shortwave’ versus ‘longwave’). For a purely absorbing cloud/haze, we demonstrate its dual effect of cooling and warming the upper and lower atmosphere, respectively, which modifies, in a non-trivial manner, the condition for whether a temperature inversion is present in the upper atmosphere. The warming effect becomes more pronounced as the cloud/haze deck resides at greater depths. If it sits below the shortwave photosphere, the warming effect becomes either more subdued or ceases altogether. If shortwave scattering is present, its dual effect is to warm and cool the upper and lower atmospheres, respectively, thus counteracting the effects of enhanced longwave absorption by the cloud/haze. We make a tentative comparison of a four-parameter model to the temperature–pressure data points inferred from the observations of HD 189733b and estimate that its Bond albedo is approximately 10 per cent. Besides their utility in developing physical intuition, our semi-analytical models are a guide for the parameter space exploration of hot Jovian atmospheres via three-dimensional simulations of atmospheric circulation.
The Astrophysical Journal | 2007
Kevin Heng; Richard McCray
We present a new formalism to describe the ratios and profiles of emission lines from hydrogen in Balmer- dominated shocks. We use this model to interpret the measured widths and ratios of broad and narrow H� ,H � , and Lyemissionlinesinsupernovaremnants(SNRs).Ourmodelresultsagreefairlywellwiththoseobtainedpreviously by Chevalier, Kirshner, & Raymond and are consistent with observations of several SNRs. The same model fails to accountfortheratioof broadtonarrowlineemission fromthereverseshockinSNR1987Aasobserved byHengand coworkers. We suggest that this discrepancy between theory and observation results from a faulty assumption that Balmer-dominatedshockscanbetreatedassharpdiscontinuities.Ifthespatialstructureoftheshocktransitionzoneis taken into account, the predicted ratios of broad to narrow line emission in most SNRs will change by modest fac- tors, but the ratio in SNR 1987Awill increase substantially. Significantly greater shock velocities will be required to account for the observed full widths at half-maximum of the broad emission lines in most SNRs. Subject headingg shock waves — supernova remnants
Astronomy and Astrophysics | 2015
Caroline Dorn; A. Khan; Kevin Heng; James A. D. Connolly; Yann Alibert; Willy Benz; Paul J. Tackley
Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.