Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Ivarsen is active.

Publication


Featured researches published by Kevin Ivarsen.


The Astrophysical Journal | 2011

AFTERGLOW OBSERVATIONS OF FERMI LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS

S. B. Cenko; Dale A. Frail; Fiona A. Harrison; J. B. Haislip; Daniel E. Reichart; N. Butler; Bethany Elisa Cobb; A. Cucchiara; Edo Berger; J. S. Bloom; P. Chandra; Derek B. Fox; Daniel A. Perley; Jason X. Prochaska; A. V. Filippenko; Karl Glazebrook; Kevin Ivarsen; Mansi M. Kasliwal; S. R. Kulkarni; Aaron Patrick Lacluyze; Sebastian Pedraza Lopez; Adam N. Morgan; Max Pettini; V. Rana

We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs; GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor and Large Area Telescope (LAT) instruments on the Fermi satellite. With its wide spectral bandpass, extending to GeV energies, Fermi is sensitive to GRBs with very large isotropic energy releases (10^(54) erg). Although rare, these events are particularly important for testing GRB central-engine models. When combined with spectroscopic redshifts, our afterglow data for these four events are able to constrain jet collimation angles, the density structure of the circumburst medium, and both the true radiated energy release and the kinetic energy of the outflows. In agreement with our earlier work, we find that the relativistic energy budget of at least one of these events (GRB 090926A) exceeds the canonical value of 10^(51) erg by an order of magnitude. Such energies pose a severe challenge for models in which the GRB is powered by a magnetar or a neutrino-driven collapsar, but remain compatible with theoretical expectations for magnetohydrodynamical collapsar models (e.g., the Blandford-Znajek mechanism). Our jet opening angles (θ) are similar to those found for pre-Fermi GRBs, but the large initial Lorentz factors (Γ_0) inferred from the detection of GeV photons imply θΓ_0 ≈ 70-90, values which are above those predicted in magnetohydrodynamic models of jet acceleration. Finally, we find that these Fermi-LAT events preferentially occur in a low-density circumburst environment, and we speculate that this might result from the lower mass-loss rates of their lower-metallicity progenitor stars. Future studies of Fermi-LAT afterglows at radio wavelengths with the order-of-magnitude improvement in sensitivity offered by the Extended Very Large Array should definitively establish the relativistic energy budgets of these events.


Nature | 2010

Formation of asteroid pairs by rotational fission

Petr Pravec; David Vokrouhlický; David Polishook; Daniel J. Scheeres; Alan W. Harris; Adrian Galad; O. Vaduvescu; Francisco Del Pozo; Patrick Longa; F. Vachier; F. Colas; Donald P. Pray; J. Pollock; Daniel E. Reichart; Kevin Ivarsen; J. B. Haislip; Aaron Patrick Lacluyze; Peter Kusnirak; T. Henych; Franck Marchis; Bennie E. Macomber; Seth A. Jacobson; Yu. N. Krugly; A. V. Sergeev; Arnaud Leroy

Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation—critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primarys spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.


Nature | 2014

A ring system detected around the Centaur (10199) Chariklo

F. Braga-Ribas; Bruno Sicardy; Jose Luis Ortiz; C. Snodgrass; F. Roques; R. Vieira-Martins; J. I. B. Camargo; M. Assafin; R. Duffard; Emmanuel Jehin; J. Pollock; R. Leiva; M. Emilio; D. I. Machado; C. Colazo; E. Lellouch; J. Skottfelt; Michaël Gillon; N. Ligier; L. Maquet; G. Benedetti-Rossi; A. Ramos Gomes; P. Kervella; H. Monteiro; R. Sfair; M. El Moutamid; Gonzalo Tancredi; J. Spagnotto; A. Maury; N. Morales

Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur—that is, one of a class of small objects orbiting primarily between Jupiter and Neptune—with an equivalent radius of 124  9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.


Monthly Notices of the Royal Astronomical Society | 2011

SN 2009jf: A slow-evolving stripped-envelope core-collapse supernova

S. Valenti; M. Fraser; Stefano Benetti; Giuliano Pignata; Jesper Sollerman; C. Inserra; E. Cappellaro; Andrea Pastorello; S. J. Smartt; Mattias Ergon; M. T. Botticella; J. Brimacombe; F. Bufano; M. Crockett; I. Eder; Dino Fugazza; J. B. Haislip; Mario Hamuy; A. Harutyunyan; Kevin Ivarsen; E. Kankare; R. Kotak; Aaron Patrick Lacluyze; L. Magill; Seppo Mattila; Jose Manuel Campillos Maza; Paolo A. Mazzali; Daniel E. Reichart; S. Taubenberger; Massimo Turatto

We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from similar to 20 d before B-band maximum to 1 yr after maximum. We show ...


The Astrophysical Journal | 2011

SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ∗,†

Giuliano Pignata; Maximilian D. Stritzinger; Alicia M. Soderberg; Paolo A. Mazzali; Mark M. Phillips; Nidia I. Morrell; J. P. Anderson; Luis Boldt; Abdo Campillay; Carlos Contreras; Gaston Folatelli; Francisco Forster; Sergio Gonzalez; Mario Hamuy; Wojtek Krzeminski; Jose Manuel Campillos Maza; M. Roth; Francisco Salgado; Emily M. Levesque; Armin Rest; J. Adam Crain; A. Foster; Joshua B. Haislip; Kevin Ivarsen; Aaron Patrick Lacluyze; Melissa C. Nysewander; Daniel E. Reichart

Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 +/- 1.9M(circle dot) of material was ejected with 0.22 +/- 0.06 M(circle dot) of it being (56)Ni. The resulting kinetic energy is 1.8 +/- 0.7 x 10(52) erg. This, together with an absolute peak magnitude of M(B) = -18.36 +/- 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of gamma-ray instruments.


Monthly Notices of the Royal Astronomical Society | 2011

A tale of two GRB-SNe at a common redshift of z=0.54

Z. Cano; D. F. Bersier; C. Guidorzi; Raffaella Margutti; K. M. Svensson; Shiho Kobayashi; Andrea Melandri; K. Wiersema; Alexei S. Pozanenko; A. J. van der Horst; Guy G. Pooley; Alberto Fernandez-Soto; A. J. Castro-Tirado; A. de Ugarte Postigo; Myungshin Im; A. P. Kamble; D. K. Sahu; J. Alonso-Lorite; G. C. Anupama; Joanne Bibby; M. J. Burgdorf; Neil R. Clay; P. A. Curran; T. A. Fatkhullin; Andrew S. Fruchter; Peter Marcus Garnavich; Andreja Gomboc; J. Gorosabel; John F. Graham; U. K. Gurugubelli

We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z= 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t-to > 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. --------------------------------------------------------------------------------


Scopus | 2011

A tale of two GRB-SNe at a common redshift of z = 0.54

D. F. Bersier; C. Guidorzi; Shiho Kobayashi; Andrea Melandri; Joanne Bibby; Neil R. Clay; Christopher J. Mottram; Carole G. Mundell; Emma E. Small; Roger Smith; Iain A. Steele; R. Margutti; K. M. Svensson; Andrew J. Levan; A. Volvach; K. Wiersema; Paul T. O'Brien; Rhaana L. C. Starling; Nial R. Tanvir; Alexei S. Pozanenko; V. Loznikov; A. J. van der Horst; Guy G. Pooley; Alberto Fernandez-Soto; A. J. Castro-Tirado; J. Gorosabel; A. de Ugarte Postigo; Myungshin Im; Young-Beom Jeon; W-K. Park

We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z= 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t-to > 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. --------------------------------------------------------------------------------


The Astrophysical Journal | 2013

MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS

Dan Milisavljevic; Raffaella Margutti; Alicia M. Soderberg; Giuliano Pignata; Laura Chomiuk; Robert A. Fesen; F. Bufano; Nathan Edward Sanders; Jerod T. Parrent; Stuart Parker; Paolo A. Mazzali; E. Pian; Timothy E. Pickering; David A. H. Buckley; Steven M. Crawford; Amanda A. S. Gulbis; Christian Hettlage; Eric J. Hooper; Kenneth H. Nordsieck; D. O'Donoghue; Tim Oliver Husser; Stephen B. Potter; Alexei Yu. Kniazev; Paul Kotze; Encarni Romero-Colmenero; Petri Vaisanen; M. Wolf; Michael F. Bietenholz; N. Bartel; Claes Fransson

We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within � 1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on the timescale of one week. High-cadence monitoring of this transition suggests that absorption attributable to a high velocity (& 12,000 km s −1 ) H-rich shell is not rare in Type Ib events. Radio observations imply a shock velocity of v � 0.13c and a progenitor star mass-loss rate of u M � 1.4 × 10 −5 M⊙ yr −1 (assuming wind velocity vw = 10 3 km s −1 ). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN2011ei are consistent with the explosion of a lower-mass (3 4 M⊙), compact (R∗ . 1 × 10 11 cm), He core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass-loss. We conclude that SN2011ei’s rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of explosion rates for Type IIb and Ib objects, and that important information about a progenitor star’s evolutionary state and mass-loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations. Subject headings: supernovae: general — supernova: individual (SN2011ei)


Nature | 2006

A photometric redshift of z = 6.39 ± 0.12 for GRB 050904

J. B. Haislip; Melissa C. Nysewander; Daniel E. Reichart; Andrew J. Levan; Nial R. Tanvir; S. B. Cenko; Derek B. Fox; P. Price; A. J. Castro-Tirado; J. Gorosabel; C. R. Evans; Elysandra Figueredo; Chelsea L. MacLeod; Justin R. Kirschbrown; Martin Jelinek; S. Guziy; A. de Ugarte Postigo; Eduardo Serra Cypriano; Aaron Patrick Lacluyze; James R. Graham; Robert S. Priddey; R. Chapman; James E. Rhoads; Andrew S. Fruchter; D. Q. Lamb; C. Kouveliotou; R. A. M. J. Wijers; Matthew B. Bayliss; Brian Paul Schmidt; Alicia M. Soderberg

In 2000, Lamb and Reichart predicted that gamma-ray bursts (GRBs) and their afterglows occur in sufficient numbers and at sufficient brightnesses at very high redshifts (z > 5) to eventually replace quasars as the preferred probe of element formation and reionization in the early universe and to be used to characterize the star-formation history of the early universe, perhaps back to when the first stars formed. Here we report the discovery of the afterglow of GRB 050904 and the identification of GRB 050904 as the first very high redshift GRB. We measure its redshift to be 6.39(+0.11,-0.12), which is consistent with the reported spectroscopic redshift (6.29 +/- 0.01). Furthermore, just redward of Ly-alpha the flux is suppressed by a factor of three on the first night, but returns to expected levels by the fourth night. We propose that this is due to absorption by molecular hydrogen that was excited to rovibrational states by the GRBs prompt emission, but was then overtaken by the jet. Now that very high redshift GRBs have been shown to exist, and at least in this case the afterglow was very bright, observing programs that are designed to capitalize on this science will likely drive a new era of study of the early universe, using GRBs as probes.Gamma-ray bursts (GRBs) and their afterglows are the most brilliant transient events in the Universe. Both the bursts themselves and their afterglows have been predicted to be visible out to redshifts of z ≈ 20, and therefore to be powerful probes of the early Universe. The burst GRB 000131, at z = 4.50, was hitherto the most distant such event identified. Here we report the discovery of the bright near-infrared afterglow of GRB 050904 (ref. 4). From our measurements of the near-infrared afterglow, and our failure to detect the optical afterglow, we determine the photometric redshift of the burst to be z = 6.39 - 0.12 + 0.11 (refs 5–7). Subsequently, it was measured spectroscopically to be z = 6.29 ± 0.01, in agreement with our photometric estimate. These results demonstrate that GRBs can be used to trace the star formation, metallicity, and reionization histories of the early Universe.


The Astrophysical Journal | 2012

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA

Ryan J. Foley; M. Kromer; G. Howie Marion; Giuliano Pignata; Maximilian D. Stritzinger; Stefan Taubenberger; Peter M. Challis; Alexei V. Filippenko; Gaston Folatelli; W. Hillebrandt; E. Y. Hsiao; Robert P. Kirshner; Weidong Li; Nidia I. Morrell; F. K. Röpke; F. Ciaraldi-Schoolmann; Ivo R. Seitenzahl; Jeffrey M. Silverman; Robert A. Simcoe; Zachory K. Berta; Kevin Ivarsen; Elisabeth R. Newton; Melissa C. Nysewander; Daniel E. Reichart

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline (Δm 15(B) = 1.69 ± 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Collaboration


Dive into the Kevin Ivarsen's collaboration.

Top Co-Authors

Avatar

Daniel E. Reichart

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Aaron Patrick Lacluyze

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Melissa C. Nysewander

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joshua B. Haislip

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

A. Crain

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Foster

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. E. Gonzalez

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge