Kevin J. Howe
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin J. Howe.
Journal of Biological Chemistry | 2009
Thanwalee Sooksa-nguan; Bakhtiyor Yakubov; Volodymyr I. Kozlovskyy; Caitlin M. Barkume; Kevin J. Howe; Theodore W. Thannhauser; Michael Rutzke; Jonathan J. Hart; Leon V. Kochian; Philip A. Rea; Olena K. Vatamaniuk
Half-molecule ATP-binding cassette transporters of the HMT-1 (heavy metal tolerance factor 1) subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans, and Chlamydomonas reinhardtii. Based on studies of S. pombe, it has been proposed that SpHMT-1 transports heavy metal·phytochelatin (PC) complexes into the vacuolysosomal compartment. PCs are glutathione derivatives synthesized by PC synthases (PCS) in plants, fungi, and C. elegans in response to heavy metals. Our previous studies in C. elegans, however, suggested that HMT-1 and PCS-1 do not necessarily act in concert in metal detoxification. To further explore this inconsistency, we have gone on to test whether DmHMT-1, an HMT-1 from a new source, Drosophila, whose genome lacks PCS homologs, functions in heavy metal detoxification. In so doing, we show that heterologously expressed DmHMT-1 suppresses the Cd2+ hypersensitivity of S. pombe hmt-1 mutants and localizes to the vacuolar membrane but does not transport Cd·PC complexes. Crucially, similar analyses of S. pombe hmt-1 mutants extend this finding to show that SpHMT-1 itself either does not transport Cd·PC complexes or is not the principal Cd·PC/apoPC transporter. Consistent with this discovery and with our previous suggestion that HMT-1 and PCS-1 do not operate in a simple linear metal detoxification pathway, we demonstrate that, unlike PCS-deficient cells, which are hypersensitive to several heavy metals, SpHMT-1-deficient cells are hypersensitive to Cd2+, but not to Hg2+ or As3+. These findings significantly change our current understanding of the function of HMT-1 proteins and invoke a PC-independent role for these transporters in Cd2+ detoxification.
Proteomics | 2011
Michelle Cilia; Kevin J. Howe; Tara Fish; Dawn Smith; Jaclyn Mahoney; Cecilia Tamborindeguy; John D. Burd; Theodore W. Thannhauser; Stewart M. Gray
Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are vectored by aphids. The identification of vector proteins mediating virus transmission is critical to develop sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Previously, we applied 2‐D DIGE to an aphid filial generation 2 population to identify proteins correlated with the transmission phenotype that were stably inherited and expressed in the absence of the virus. In the present study, we examined the expression of the DIGE candidates in previously unstudied, field‐collected aphid populations. We hypothesized that the expression of proteins involved in virus transmission could be clinically validated in unrelated, virus transmission‐competent, field‐collected aphid populations. All putative biomarkers were expressed in the field‐collected biotypes, and the expression of nine of these aligned with the virus transmission‐competent phenotype. The strong conservation of the expression of the biomarkers in multiple field‐collected populations facilitates new and testable hypotheses concerning the genetics and biochemistry of virus transmission. Integration of these biomarkers into current aphid‐scouting methodologies will enable rational strategies for vector control aimed at judicious use and development of precision pest control methods that reduce plant virus infection.
PLOS ONE | 2012
Michelle Cilia; Kari A. Peter; Michael S. Bereman; Kevin J. Howe; Tara Fish; Dawn Smith; Fredrick E. Gildow; Michael J. MacCoss; Theodore W. Thannhauser; Stewart M. Gray
Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.
Journal of Proteome Research | 2014
Patricia Valle Pinheiro; Michael S. Bereman; John D. Burd; Melissa Pals; Scott Armstrong; Kevin J. Howe; Theodore W. Thannhauser; Michael J. MacCoss; Stewart M. Gray; Michelle Cilia
Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort developing aphid-resistant, small-grain varieties to limit insecticide control of the greenbug, Schizaphis graminum. However, new S. graminum biotypes frequently emerge that break resistance. Mechanisms of virulence on the aphid side of the plant-insect interaction are not well understood. S. graminum biotype H is highly virulent on most small grain varieties. This characteristic makes biotype H ideal for comparative proteomics to investigate the basis of biotype virulence in aphids. In this study, we used comparative proteomics to identify protein expression differences associated with virulence. Aphid proteins involved in the tricarboxylic acid cycle, immune system, cell division, and antiapoptosis pathways were found to be up-regulated in biotype H relative to other biotypes. Proteins from the bacterial endosymbiont of aphids were also differentially expressed in biotype H. Guided by the proteome results, we tested whether biotype H had a fitness advantage compared with other S. graminum biotypes and found that biotype H had a higher reproductive fitness as compared with two other biotypes on a range of different wheat germplasms. Finally, we tested whether aphid genetics can be used to further dissect the genetic mechanisms of biotype virulence in aphids. The genetic data showed that sexual reproduction is a source of biotypic variation observed in S. graminum.
Proteome | 2014
Ikenna Okekeogbu; Zhujia Ye; Sasikiran Sangireddy; Hui Li; Sarabjit Bhatti; Dafeng Hui; Suping Zhou; Kevin J. Howe; Tara Fish; Yong Yang; Theodore W. Thannhauser
Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.
Journal of Insect Physiology | 2011
Michelle Cilia; Cecilia Tamborindeguy; M. Rolland; Kevin J. Howe; Theodore W. Thannhauser; Stewart M. Gray
Homology-driven proteomics promises to reveal functional biology in insects with sparse genome sequence information. A proteomics study comparing plant virus transmission competent and refractive genotypes of the aphid Schizaphis graminum isolated numerous candidate proteins involved in virus transmission, but limited genome sequence information hampered their identification. The complete genome of the pea aphid, Acyrthosiphon pisum, released in 2008, enabled us to double the number of protein identifications beyond what was possible using available EST libraries and other insect sequences. This was concomitant with a dramatic increase of the number of MS and MS/MS peptide spectra matching the genome-derived protein sequence. LC-MS/MS proved to be the most robust method of peptide detection. Cross-matching spectral data to multiple EST sequences and error tolerant searching to identify amino acid substitutions enhanced the percent coverage of the Schizaphis graminum proteins. 2-D electrophoresis provided the protein pI and MW which enabled the refinement of the candidate protein selection and provided a measure of protein abundance when coupled to the spectral data. Thus, the homology-based proteomics pipeline for insects should include efforts to maximize the number of peptide matches to the protein to increase certainty in protein identification and relative protein abundance.
Electrophoresis | 2013
Theodore W. Thannhauser; Miaoqing Shen; Robert W. Sherwood; Kevin J. Howe; Tara Fish; Yong Yang; Wei Chen; Sheng Zhang
Glycosylation is a common PTM of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has been difficult due to the distinct physicochemical properties of the peptidyl and glycan moieties, the variable and dynamic nature of the glycosylation process, their heterogeneous nature, and the low relative abundance of each glycoform. In this study, we explore a new pipeline developed for large‐scale empirical identification of N‐linked glycoproteins of tomato fruit as part of our ongoing efforts to characterize the tomato secretome. The workflow presented involves a combination of lectin affinity, tryptic digestion, ion‐pairing HILIC, and precursor ion‐driven data‐dependent MS/MS analysis with a script to facilitate the identification and characterization of occupied N‐linked glycosylation sites. A total of 212 glycoproteins were identified in this study, in which 26 glycopeptides from 24 glycoproteins were successfully characterized in just one HILIC fraction. Further precursor ion discovery‐based MS/MS and deglycosylation followed by high accuracy and resolution MS analysis were used to confirm the glycosylation sites and determine site occupancy rates. The workflow reported is robust and capable of producing large amounts of empirical data involving N‐linked glycosylation sites and their associated glycoforms.
International Journal of Molecular Sciences | 2016
Zhujia Ye; Sasikiran Sangireddy; Ikenna Okekeogbu; Suping Zhou; Chih-Li Yu; Dafeng Hui; Kevin J. Howe; Tara Fish; Theodore W. Thannhauser
Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675).
Proteome | 2017
Sasikiran Sangireddy; Ikenna Okekeogbu; Zhujia Ye; Suping Zhou; Kevin J. Howe; Tara Fish; Theodore W. Thannhauser
The tomato (Solanum lycopersicum) ripening process from mature green (MG) to turning and then to red stages is accompanied by the occurrences of physiological and biochemical reactions, which ultimately result in the formation of the flavor, color and texture of ripe fruits. The two trivalent metal ions Al3+ and La3+ are known to induce different levels of phytotoxicity in suppressing root growth. This paper aims to understand the impacts of these two metal ions on tomato fruit proteomes. Tomato ‘Micro-Tom’ plants were grown in a hydroponic culture system supplemented with 50 μM aluminum sulfate (Al2 (SO4)3.18H2O) for Al3+ or La2(SO4)3 for La3+. Quantitative proteomics analysis, using isobaric tags for relative and absolute quantitation, were performed for fruits at MG, turning and red stages. Results show that in MG tomatoes, proteins involved in protein biosynthesis, photosynthesis and primary carbohydrate metabolisms were at a significantly lower level in Al-treated compared to La-treated plants. For the turning and red tomatoes, only a few proteins of significant differences between the two metal treatments were identified. Results from this study indicate that compared to La3+, Al3+ had a greater influence on the basic biological activities in green tomatoes, but such an impact became indistinguishable as tomatoes matured into the late ripening stages.
Journal of biomolecular techniques | 2007
Yong Yang; Sheng Zhang; Kevin J. Howe; David Wilson; Felix Moser; Diana C. Irwin; Theodore W. Thannhauser