Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin J. Parsons is active.

Publication


Featured researches published by Kevin J. Parsons.


PLOS ONE | 2010

Bentho-Pelagic Divergence of Cichlid Feeding Architecture Was Prodigious and Consistent during Multiple Adaptive Radiations within African Rift-Lakes

W. James Cooper; Kevin J. Parsons; Alyssa McIntyre; Brittany Kern; Alana McGee-Moore; R. Craig Albertson

Background How particular changes in functional morphology can repeatedly promote ecological diversification is an active area of evolutionary investigation. The African rift-lake cichlids offer a calibrated time series of the most dramatic adaptive radiations of vertebrate trophic morphology yet described, and the replicate nature of these events provides a unique opportunity to test whether common changes in functional morphology have repeatedly facilitated their ecological success. Methodology/Principal Findings Specimens from 87 genera of cichlid fishes endemic to Lakes Tanganyka, Malawi and Victoria were dissected in order to examine the functional morphology of cichlid feeding. We quantified shape using geometric morphometrics and compared patterns of morphological diversity using a series of analytical tests. The primary axes of divergence were conserved among all three radiations, and the most prevalent changes involved the size of the preorbital region of the skull. Even the fishes from the youngest of these lakes (Victoria), which exhibit the lowest amount of skull shape disparity, have undergone extensive preorbital evolution relative to other craniofacial traits. Such changes have large effects on feeding biomechanics, and can promote expansion into a wide array of niches along a bentho-pelagic ecomorphological axis. Conclusions/Significance Here we show that specific changes in trophic anatomy have evolved repeatedly in the African rift lakes, and our results suggest that simple morphological alterations that have large ecological consequences are likely to constitute critical components of adaptive radiations in functional morphology. Such shifts may precede more complex shape changes as lineages diversify into unoccupied niches. The data presented here, combined with observations of other fish lineages, suggest that the preorbital region represents an evolutionary module that can respond quickly to natural selection when fishes colonize new lakes. Characterizing the changes in cichlid trophic morphology that have contributed to their extraordinary adaptive radiations has broad evolutionary implications, and such studies are necessary for directing future investigations into the proximate mechanisms that have shaped these spectacular phenomena.


Evolution | 2006

REPLICATED EVOLUTION OF INTEGRATED PLASTIC RESPONSES DURING EARLY ADAPTIVE DIVERGENCE

Kevin J. Parsons; Beren W. Robinson

Abstract Colonization of a novel environment is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. Local adaptation in the new environment occurs through the accumulation and integration of character states that positively affect fitness. The role played by plastic traits in adaptation to a novel environment has generally been ignored, except for variable environments. We propose that if conditions in a relatively stable but novel environment induce phenotypically plastic responses in many traits, and if genetic variation exists in the form of those responses, then selection may initially favor the accumulation and integration of functionally useful plastic responses. Early divergence between ancestral and colonist forms will then occur with respect to their plastic responses across the gradient bounded by ancestral and novel environmental conditions. To test this, we compared the magnitude, integration, and pattern of plastic character responses in external body form induced by shallow versus open water conditions between two sunfish ecomorphs that coexist in four postglacial lakes. The novel sunfish ecomorph is present in the deeper open water habitat, whereas the ancestral ecomorph inhabits the shallow waters along the lake margin. Plastic responses by open water ecomorphs were more correlated than those of their local shallow water ecomorph in two of the populations, whereas equal levels of correlated plastic character responses occurred between ecomorphs in the other two populations. Small but persistent differences occurred between ecomorph pairs in the pattern of their character responses, suggesting a recent divergence. Open water ecomorphs shared some similarities in the covariance among plastic responses to rearing environment. Replication in the form of correlated plastic responses among populations of open water ecomorphs suggests that plastic character states may evolve under selection. Variation between ecomorphs and among lake populations in the covariance of plastic responses suggests the presence of genetic variation in plastic character responses. In three populations, open water ecomorphs also exhibited larger plastic responses to the environmental gradient than the local shallow water ecomorph. This could account for the greater integration of plastic responses in open water ecomorphs in two of the populations. This suggests that the plastic responses of local sunfish ecomorphs can diverge through changes in the magnitude and coordination of plastic responses. Although these results require further investigation, they suggest that early adaptive evolution in a novel environment can include changes to plastic character states. The genetic assimilation of coordinated plastic responses could result in the further, and possibly rapid, divergence of such populations and could also account for the evolution of genes of major effect that contribute to suites of phenotypic differences between divergent populations.


The American Naturalist | 2012

Constraint and Opportunity: The Genetic Basis and Evolution of Modularity in the Cichlid Mandible

Kevin J. Parsons; Eladio Márquez; R. Craig Albertson

Modular variation, whereby the relative degree of connectivity varies within a system, is thought to evolve through a process of selection that favors the integration of certain traits and the decoupling of others. In this way, modularity may facilitate the pace of evolution and determine evolvability. Alternatively, conserved patterns of modularity may act to constrain the rate and direction of evolution by preventing certain functions from evolving. A comprehensive understanding of the potential interplay between these phenomena will require knowledge of the inheritance and the genetic basis of modularity. Here we explore these ideas in the cichlid mandible by investigating patterns of modularity at the clade and species levels and through the introduction of a new approach, the individual level. Specifically, we assessed patterns of covariation in Lake Malawi cichlid species that employ alternate “biting” and “suction-feeding” modes of feeding and in a hybrid cross between these two ecotypes. Across the suction-feeding clade, patterns of modularity were largely conserved and reflected a functionally based pattern. In contrast, the biting species displayed a pattern of modularity that more closely matched developmental modules. The pattern of modularity present in our F2 population was very similar to the pattern exhibited by the biter, suggesting a role for dominant inheritance. We demonstrate that our individual-level metric of modularity (IMM) is a valid quantitative trait that has a nonlinear relationship with shape. IMMs for each model were used as quantitative characters to map quantitative trait loci (QTL) that underlie modularity. Our QTL analysis offers new insights into the genetic basis of modularity in these fishes that may eventually lead to the discovery of the genetic processes that delineate particular modules. In all, our findings suggest that modularity is both a constraining and an evolvable force in cichlid evolution, as distinct patterns occur between species and variation exists among individuals.


Journal of Evolutionary Biology | 2007

Foraging performance of diet‐induced morphotypes in pumpkinseed sunfish (Lepomis gibbosus) favours resource polymorphism

Kevin J. Parsons; Beren W. Robinson

Morphological plasticity can influence adaptive divergence when it affects fitness components such as foraging performance. We induced morphological variation in pumpkinseed sunfish (Lepomis gibbosus) ecomorphs and tested for effects on foraging performance. Young‐of‐year pumpkinseed sunfish from littoral and pelagic lake habitats were reared each on a ‘specialist diet’ representing their native habitat‐specific prey, or a ‘generalist diet’ reflecting a combination of native and non‐native prey. Specialist and generalist diets, respectively, induced divergent and intermediate body forms. Specialists had the highest capture success on their native prey whereas generalist forms were inferior. Specialists faced trade‐offs across prey types. However, pelagic specialists also had the highest intake rate on both prey types suggesting that foraging trade‐offs are relaxed when prey are abundant. This increases the likelihood of a resource polymorphism because the specialized pelagic form can be favoured by directional selection when prey are abundant and by diversifying selection when prey resources are restricted.


Evolutionary Biology-new York | 2011

Hybridization Promotes Evolvability in African Cichlids: Connections Between Transgressive Segregation and Phenotypic Integration

Kevin J. Parsons; Young H. Son; R. Craig Albertson

Hybridization is a potential source of novel variation through (1) transgressive segregation, and (2) changes in the patterns and strength of phenotypic integration. We investigated the capacity of hybridization to generate novel phenotypic variation in African cichlids by examining a large F2 population generated by hybridizing two Lake Malawi cichlid species with differently shaped heads. Our morphometric analysis focused on the lateral and ventral views of the head. While the lateral view exhibited marked transgressive segregation, the ventral view showed a limited ability for transgression, indicating a difference in the genetic architecture and selective history between alternate views of the head. Moreover, hybrids showed a marked reduction in integration, with a lower degree of integration observed in transgressive individuals. In all, these data offer novel insights into how hybridization can promote evolvability, and provide a possible explanation for how broad phenotypic diversity may be achieved in rapidly evolving groups.


Nature Communications | 2014

Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids

Kevin J. Parsons; A. Trent Taylor; Kara E. Powder; R. Craig Albertson

Progress towards understanding adaptive radiations at the mechanistic level is still limited with regard to the proximate molecular factors that both promote and constrain evolution. Here we focus on the craniofacial skeleton and show that expanded Wnt/β-catenin signalling early in ontogeny is associated with the evolution of phenotypic novelty and ecological opportunity in Lake Malawi cichlids. We demonstrate that the mode of action of this molecular change is to effectively lock into place an early larval phenotype, likely through accelerated rates of bone deposition. However, we demonstrate further that this change toward phenotypic novelty may in turn constrain evolutionary potential through the corresponding reduction in craniofacial plasticity at later stages of ontogeny. In all, our data implicate the Wnt pathway as an important mediator of craniofacial form and offer new insights into how developmental systems can evolve to both promote and constrain evolutionary change.


Annual Review of Genetics | 2009

Roles for Bmp4 and CaM1 in Shaping the Jaw: Evo-Devo and Beyond

Kevin J. Parsons; Albertson Rc

The craniofacial skeleton, including jaws and beaks, figures prominently in discussions of adaptive divergence. Craniofacial abnormalities also occur in a number of human syndromes, making the development and genetic basis of craniofacial morphology an area of great interest to a wide spectra of biological and medical disciplines. Recent experiments have implicated key roles for Bmp4 and CaM1 in determining the size and shape of craniofacial traits. These factors offer potent new molecular inroads into the processes, mechanisms, and pathways that underlie craniofacial development and the morphogenesis of shape. Here we review this evidence and discuss its use as the basis for a number of new research avenues.


Journal of Evolutionary Biology | 2011

Phenotypic plasticity, heterochrony and ontogenetic repatterning during juvenile development of divergent Arctic charr (Salvelinus alpinus).

Kevin J. Parsons; H. D. Sheets; Skúli Skúlason; Moira M. Ferguson

Phenotypic plasticity is a developmental process that plays a role as a source of variation for evolution. Models of adaptive divergence make the prediction that increasing ecological specialization should be associated with lower levels of plasticity. We tested for differences in the magnitude, rate and trajectory of morphological plasticity in two lake populations of Arctic charr (Salvelinus alpinus) that exhibited variation in the degree of resource polymorphism. We reared offspring on diet treatments that mimicked benthic and pelagic prey. Offspring from the more divergent population had lower levels of morphological plasticity. Allometry influenced the rate of shape change over ontogeny, with differences in rate among ecomorphs being minimal when allometric variation was removed. However, plasticity in the spatial trajectory of development was extensive across ecomorphs, both with and without the inclusion of allometric variation, suggesting that different aspects of shape development can evolve independently.


Evolution & Development | 2010

Morphological variation over ontogeny and environments in resource polymorphic arctic charr (Salvelinus alpinus)

Kevin J. Parsons; Skúli Skúlason; Moira M. Ferguson

SUMMARY Natural selection requires genetically based phenotypic variation to facilitate its action and cause adaptive evolution. It has become increasingly recognized that morphological development can become canalized likely as a result of selection. However, it is largely unknown how selection may influence canalization over ontogeny and differing environments. Changes in environments or colonization of a novel one is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. In turn, a novel environment may also expose variation previously hidden from natural selection. We tested for changes in phenotypic variation over ontogeny and environments among ecomorphs of Arctic charr (Salvelinus alpinus) from two Icelandic lakes. Populations represented varying degrees of ecological specialization, with one lake population possessing highly specialized ecomorphs exhibiting a large degree of phenotypic divergence, whereas the other displayed more subtle divergence with more ecological overlap. Here we show that ecomorphs hypothesized to be the most specialized in each lake possess significant reductions in shape variation over ontogeny regardless of environmental treatment suggesting canalized development. However, environments did change the amount of shape variation expressed in these ecomorphs, with novel environments slowing the rate at which variation was reduced over ontogeny. Thus, environmental conditions may play an important role in determining the type and amount of genetically based phenotypic variation exposed to natural selection.


International Journal of Evolutionary Biology | 2011

Modularity of the Oral Jaws Is Linked to Repeated Changes in the Craniofacial Shape of African Cichlids

Kevin J. Parsons; W. James Cooper; R. Craig Albertson

The African cichlids of the East-African rift-lakes provide one of the most dramatic examples of adaptive radiation known. It has long been thought that functional decoupling of the oral and pharyngeal jaws in cichlids has facilitated their explosive evolution. Recent research has also shown that craniofacial evolution from radiations in lakes Victoria, Malawi, and Tanganyika has occurred along a shared primary axis of shape divergence, whereby the preorbital region of the skull changes in a manner that is, relatively independent from other head regions. We predicted that the preorbital region would comprise a variational module and used an extensive dataset from each lake that allowed us to test this prediction using a model selection approach. Our findings supported the presence of a preorbital module across all lakes, within each lake, and for Malawi, within sand and rock-dwelling clades. However, while a preorbital module was consistently present, notable differences were also observed among groups. Of particular interest, a negative association between patterns of variational modularity was observed between the sand and rock-dwelling clades, a patter consistent with character displacement. These findings provide the basis for further experimental research involving the determination of the developmental and genetic bases of these patterns of modularity.

Collaboration


Dive into the Kevin J. Parsons's collaboration.

Top Co-Authors

Avatar

R. Craig Albertson

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge