Kevin J. Pike
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin J. Pike.
Journal of Materials Chemistry | 2009
Sen Lin; Claudia Ionescu; Kevin J. Pike; Mark E. Smith; Julian R. Jones
Sol–gel derived bioactive glasses (70 mol% SiO2 and 30 mol% CaO) have high potential as materials for bone regeneration and devices for sustained drug delivery. They bond to bone and have a controllable degradation rate. They have a unique tailorable nanoporosity, which enhances their surface area and exposes hydroxyl groups and affects protein adsorption and cellular response. This study aims to fully characterise the evolution of the nanoporous structure of sol–gel derived bioactive glass for the first time, to fully understand its nanostructure evolution and control, so that materials with specific nanoporous networks can be produced to further enhance effects on tissue regeneration. It was confirmed that nanopores of sol–gel derived bioactive glass are interstitial spaces between nanoparticles. Nanoparticles, approximately 5 nm in diameter that were produced early in the process, agglomerated into larger particles during the gelation process (10–30 nm in diameter) during stabilisation via heat treatment. Inductive coupled plasma (ICP) analysis of the pore liquor after ageing revealed that calcium nitrate (the calcium precursor) dissolves in pore liquor before drying. Thermal real time X-ray diffraction and MAS-NMR data revealed that calcium nitrate coated the silica nanoparticles during drying and calcium did not enter the silica network until the material was heated to 400 °C. This has implications for ensuring a homogeneous calcium distribution in bioactive glasses made by the sol–gel route.
Journal of Magnetic Resonance | 2012
Kevin J. Pike; Thomas F. Kemp; Hiroki Takahashi; Robert Day; A. P. Howes; Eugeny V. Kryukov; James F. MacDonald; Alana Collis; David R. Bolton; Richard J. Wylde; Marcella Orwick; K. Kosuga; Andrew J. Clark; T. Idehara; Anthony Watts; Graham Smith; Mark E. Newton; Ray Dupree; Mark E. Smith
A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.
Chemistry: A European Journal | 2010
John V. Hanna; Kevin J. Pike; Thibault Charpentier; Thomas F. Kemp; Mark E. Smith; Bryan E. G. Lucier; Robert W. Schurko; Lindsay S. Cahill
A variable B(0) field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high-precision measurement of (93)Nb NMR interaction parameters such as the isotropic chemical shift (delta(iso)), quadrupole coupling constant and asymmetry parameter (C(Q) and eta(Q)), chemical shift span/anisotropy and skew/asymmetry (Omega/Deltadelta and kappa/eta(delta)) and Euler angles (alpha, beta, gamma) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR-CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from Nb(V) in most oxo environments, this study emphasises that a thorough variable B(0) approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (-1/2<-->+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these (93)Nb broadline data. These measurements reveal that the (93)Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the Nb(V) positions, with C(Q) values in the 0 to >80 MHz range being measured; similarly, the delta(iso) (covering an approximately 250 ppm range) and Omega values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb-O bond angles and distances defining the immediate Nb(V) oxo environment is complicated by longer-range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the (93)Nb NMR interaction parameters generated here are the all-electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR-CASTEP DFT approaches, which account for the short- and long-range symmetries, periodicities and interaction-potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.
Chemical Physics Letters | 2003
P.K. Madhu; Kevin J. Pike; Ray Dupree; Malcolm H. Levitt; Mark E. Smith
Abstract We report signal enhancement schemes using fast amplitude modulated pulses for the one-dimensional (1D) nuclear magnetic resonance (NMR) of spin-5/2 nuclei under magic-angle spinning. Signal enhancement by a factor of around 2.5 is observed when amplitude modulated pulses precede selective excitation of the central transition. This enhancement is a result of the redistribution of energy level populations through partial saturation of the satellite transitions. Results are shown for 27 Al and 17 O. The gain in signal intensity is very useful for the observation of weak signals from low abundance quadrupolar nuclei. The scheme works for wide ranges of quadrupole interactions and rf powers.
Chemical Physics Letters | 2003
V. Lemaître; Kevin J. Pike; A. B. Watts; Tiit Anupõld; Ago Samoson; Mark E. Smith; R. Dupree
Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D,L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes.
Inorganic Chemistry | 2009
Christopher S. Griffith; Vittorio Luca; John V. Hanna; Kevin J. Pike; Mark E. Smith; Gordon S. Thorogood
The structural basis of selectivity for cesium and strontium of microcrystalline hexagonal tungsten bronze (HTB) phase Na(x)WO(3+x/2).zH(2)O has been studied using X-ray and neutron diffraction techniques, 1D and 2D (23)Na magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and radiochemical ion exchange investigations. For the HTB system, this study has shown that scattering techniques alone provide an incomplete description of the disorder and rapid exchange of water (with tunnel cations) occurring in this system. However, 1D and 2D (23)Na MAS NMR has identified three sodium species within the HTB tunnels-species A, which is located at the center of the hexagonal window and is devoid of coordinated water, and species B and C, which are the di- and monohydrated variants, respectively, of species A. Although species B accords with the traditional crystallographic model of the HTB phase, this work is the first to propose and identify the anhydrous species A and monohydrate species C. The population (total) of species B and C decreases in comparison to that of species A with increasing exchange of either cesium or strontium; that is, species B and C appear more exchangeable than species A. Moreover, a significant proportion of tunnel water is redistributed by these cations. Multiple ion exchange investigations with radiotracers (137)Cs and (85)Sr have shown that for strontium there is a definite advantage in ensuring that any easily exchanged sodium is removed from the HTB tunnels prior to exchange. The decrease in selectivity (wrt cesium) is most probably due to the slightly smaller effective size of Sr(2+); namely, it is less of a good fit for the hexagonal window, ion exchange site. The selectivity of the HTB framework for cesium has been shown unequivocally to be defined by the structure of the hexagonal window, ion exchange site. Compromising the geometry of this window even in the slightest way by either (1) varying the cell volume through changes to hydration or sodium content or (2) introducing disorder in the a-b plane through isomorphous substitution of molybdenum is sufficient to reduce the selectivity. Indeed, it is our hypothesis that this applies for all cations which are strongly bound by the HTB framework.
Physical Chemistry Chemical Physics | 2011
Eugeny V. Kryukov; Kevin J. Pike; Thomas K. Y. Tam; Mark E. Newton; Mark E. Smith; Ray Dupree
It is shown that the temperature dependence of the DNP enhancement of the NMR signal from water protons at 3.4 T using TEMPOL as a polarising agent can be obtained provided that the nuclear relaxation, T(1I), is sufficiently fast and the resolution sufficient to measure the (1)H NMR shift. For high radical concentrations (∼100 mM) the leakage factor is approximately 1 and, provided sufficient microwave power is available, the saturation factor is also approximately 1. In this situation the DNP enhancement is solely a product of the ratio of the electron and nuclear gyromagnetic ratios and the coupling factor enabling the latter to be directly determined. Although the use of high microwave power levels needed to ensure saturation causes rapid heating of the sample, this does not prevent maximum DNP enhancements, ε(0), being obtained since T(1I) is very much less than the characteristic heating time at these concentrations. It is necessary, however, to know the temperature variation of T(1I) to allow accurate modelling of the behaviour. The DNP enhancement is found to vary linearly with temperature with ε(0)(T) = -2 ± 2 - (1.35 ± 0.02)T for 6 °C ≤ T ≤ 100 °C. The value determined for the coupling factor, 0.055 ± 0.003 at 25 °C, agrees very well with the molecular dynamics simulations of Sezer et al. (Phys. Chem. Chem. Phys., 2009, 11, 6626) who calculated 0.0534, however the experimental values increase much more rapidly with increasing temperature than predicted by these simulations. Large DNP enhancements (|ε(0)| > 100) are reported at high temperatures but it is also shown that significant enhancements (e.g.∼40) can be achieved whilst maintaining the sample temperature at 40 °C by adjusting the microwave power and irradiation time. In addition, short polarisation times enable rapid data acquisition which permits further enhancement of the signal, such that useful liquid state DNP-NMR experiments could be carried out on very small samples.
Journal of Magnetic Resonance | 2003
P.K. Madhu; Ole G. Johannessen; Kevin J. Pike; Ray Dupree; Mark E. Smith; Malcolm H. Levitt
We report pulse sequences for the sensitivity enhancement of magic-angle spinning and multiple-quantum magic-angle spinning spectra of spin-72 systems. Sensitivity enhancement is obtained with the use of fast amplitude-modulated (FAM) radiofrequency pulses. In one-dimensional magic-angle spinning experiments, signal enhancement of 3 is obtained by a FAM pulse followed by a soft 90 degrees pulse. In two-dimensional multiple-quantum magic-angle spinning experiments, FAM pulses are used for both the excitation of multiple-quantum coherences and for their conversion into observable single-quantum coherences. The observed signal enhancements are 2.2 in 3Q experiments, 3.1 in 5Q experiments, and 4.1 in 7Q experiments, compared to the conventional two-pulse scheme. The pulse schemes are demonstrated on the 45Sc NMR of Sc2(SO4)3 x 5H2O and the 139La NMR of LaAlO3. We also demonstrate the generation of FAM pulses by double-frequency irradiation.
Journal of Magnetic Resonance | 2010
Thomas F. Kemp; Geetha Balakrishnan; Kevin J. Pike; Mark E. Smith; Ray Dupree
The measurement of temperature in a Magic Angle Spinning NMR probe in the temperature range 85-300K is discussed. It is shown that the shift of the (119)Sn resonance of Sm(2)Sn(2)O(7) makes a good thermometer with shift being given by delta=223 - 9.54x10(4)/Tppm and a potential precision of better than 0.5K over the entire temperature range. The sensitivity is such (e.g. 4.2ppm/K at 150K) that small temperature gradients across the sample can readily be measured. Furthermore, since the spin-lattice relaxation time is very short, measurements can be made in approximately 1s enabling relatively rapid temperature changes to be followed. Values for the chemical shift of (207)Pb in Pb(NO(3))(2) down to approximately 85K are also presented. Although the (207)Pb shift variation is approximately linear near room temperature (we find a slope 0.725+/-0.002ppm/K over the range 293-153K), it clearly deviates from linearity below approximately 130K.
Journal of Magnetic Resonance | 2003
Thomas Bräuniger; Kevin J. Pike; Robin K. Harris; P.K. Madhu
We report here an efficient multiple-quantum magic-angle spinning (MQMAS) pulse sequence involving fast amplitude-modulated (FAM) radio-frequency pulses for excitation and conversion of five-quantum (5Q) coherences of spin-5/2 nuclei. The use of a FAM-I type pulse train for the conversion of 5Q into 1Q coherences proves to be easier to implement experimentally than the earlier suggested use of a FAM-II type sequence [J. Magn. Reson. 154 (2002) 280], while delivering at least equal signal enhancement. Results of numerical simulations and experimental 27Al 5QMAS spectra of aluminium acetylacetonate for different excitation and conversion schemes are compared to substantiate these claims. We also demonstrate the feasibility of acquiring 5QMAS spectra of spin-5/2 systems using cogwheel phase cycling [J. Magn. Reson. 155 (2002) 300] to select the desired coherence pathways. A cogwheel phase cycle of only 57 steps is shown to be as effective as the minimum conventional nested 77-step phase cycle.