Kevin J. Wright
International AIDS Vaccine Initiative
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin J. Wright.
Journal of Virology | 2008
David A. Cooper; Kevin J. Wright; Priscilla Calderon; Min Guo; Farooq Nasar; J. Erik Johnson; John W. Coleman; Margaret Lee; Cheryl S. Kotash; Irene Yurgelonis; Robert J. Natuk; R. Michael Hendry; Stephen A. Udem; David K. Clarke
ABSTRACT Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made.
Journal of Virology | 2007
David K. Clarke; Farooq Nasar; Margaret Lee; J. Erik Johnson; Kevin J. Wright; Priscilla Calderon; Min Guo; Robert J. Natuk; David A. Cooper; R. Michael Hendry; Stephen A. Udem
ABSTRACT A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their “wild-type” progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD50) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD50 of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.
Journal of Virology | 2006
Robert J. Natuk; David A. Cooper; Min Guo; Priscilla Calderon; Kevin J. Wright; Farooq Nasar; Susan E. Witko; Diane Pawlyk; Margaret Lee; Joanne DeStefano; Donna Tummolo; Aaron S. Abramovitz; Seema Gangolli; David K. Clarke; R. Michael Hendry; John H. Eldridge; Stephen A. Udem; Jacek Kowalski
ABSTRACT Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.
Vaccine | 2009
J. Erilc Johnson; John W. Coleman; Priscilla Calderon; Kevin J. Wright; Jennifer Obregon; Eleanor Ogin-Wilson; Robert J. Natuk; David K. Clarke; Stephen A. Udem; David A. Cooper; R. Michael Hendry
Abstract Recombinant vesicular stomatitis viruses (rVSVs) are being developed as potential HIV-1 vaccine candidates. To characterize the in vivo replication and dissemination of rVSV vectors in mice, high doses of a highly attenuated vector expressing HIV-1 Gag, rVSVIN-N4CT9-Gag1, and a prototypic reference virus, rVSVIN-HIVGag5, were delivered intramuscularly (IM), intranasally (IN), or intravenously (IV). We used quantitative, real-time RT-PCR (Q-PCR) and standard plaque assays to measure the temporal dissemination of these viruses to various tissues. Following IM inoculation, both viruses were detected primarily at the injection site as well as in draining lymph nodes; neither virus induced significant weight loss, pathologic signs, or evidence of neuroinvasion. In contrast, following IN inoculation, the prototypic virus was detected in all tissues tested and caused significant weight loss leading to death. IN administration of rVSVIN-N4CT9-Gag1 resulted in detection in numerous tissues (brain, lung, nasal turbinates, and lymph nodes) albeit in significantly reduced levels, which caused little or no weight loss nor any mortality. Following IV inoculation, both prototypic and attenuated viruses were detected by Q-PCR in all tissues tested. In contrast to the prototype, rVSVIN-N4CT9-Gag1 viral loads were significantly lower in all organs tested, and no infectious virus was detected in the brain following IV inoculation, despite the presence of viral RNA. These studies demonstrated significant differences in the biodistribution patterns of and the associated pathogenicity engendered by the prototypic and attenuated vectors in a highly susceptible host.
PLOS ONE | 2014
Svetlana Rabinovich; Rebecca Powell; Ross W. B. Lindsay; Maoli Yuan; Alexei Carpov; Aaron Wilson; Mary Lopez; John W. Coleman; Denise Wagner; Palka Sharma; M Kemelman; Kevin J. Wright; John P. Seabrook; Heather Arendt; Jennifer Martinez; Joanne DeStefano; Maria J. Chiuchiolo; Christopher L. Parks
Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5′terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 104–105, with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.
Virology | 2015
Xinsheng Zhang; Olivia Wallace; Arban Domi; Kevin J. Wright; Jonathan Driscoll; Omu Anzala; Eduard J. Sanders; Anatoli Kamali; Etienne Karita; Susan Allen; Pat Fast; Jill Gilmour; Matthew Price; Christopher L. Parks
Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies.
Virology | 2013
Xinsheng Zhang; Olivia Wallace; Kevin J. Wright; Martin Backer; John W. Coleman; Rebecca Koehnke; Esther Frenk; Arban Domi; Maria J. Chiuchiolo; Joanne DeStefano; Sandeep Narpala; Rebecca Powell; Gavin Morrow; Cesar Boggiano; Timothy J. Zamb; C. Richter King; Christopher L. Parks
We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination.
Journal of Virological Methods | 2015
John W. Coleman; Kevin J. Wright; Olivia Wallace; Palka Sharma; Heather Arendt; Jennifer Martinez; Joanne DeStefano; Timothy P. Zamb; Xinsheng Zhang; Christopher L. Parks
Abstract Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert.
Retrovirology | 2012
Ck Jurgens; G Morrow; C Boggiano; M Panis; John W. Coleman; Rebecca Powell; Maoli Yuan; M Kemelman; N Tamot; M Lopez; A Ouattara; S Iyer; M Backer; Kevin J. Wright; Arban Domi; Maria J. Chiuchiolo; Cr King; Michael J. Caulfield; Christopher L. Parks
Background Immunity elicited by live attenuated vaccines confers protection against viral pathogens causing measles, yellow fever, smallpox and others, but this approach is not well suited to HIV vaccine development. Accordingly, to develop a vaccine that incorporates features of a live virus that make it immunogenic without the inherent safety issues associated with attenuated lentiviruses, we are developing replication-competent, recombinant vesicular stomatitis virus (rVSV) vectors for delivery of SIV and HIV vaccines.
Retrovirology | 2012
Christopher L. Parks; Svetlana Rabinovich; Pj Tiberio; Kevin J. Wright; Maoli Yuan; Mg Delboy; M Kemelman; Aaron Wilson; Rebecca Powell; Simon Hoffenberg; Maria J. Chiuchiolo; C Boggiano; G Morrow; Ivo C. Lorenz; Christy K. Jurgens; Xinsheng Zhang; Ross W. B. Lindsay; Wayne C. Koff; Cr King; Michael J. Caulfield
Methods We are using vesicular stomatitis virus (VSV) as a vector platform for delivery of Env immunogens as transmembrane glycoproteins. We have investigated a variety of vector designs and Env modifications to identify combinations that balance the practical requirement for vector genetic stability with factors influencing antibody responses including immunogen abundance, efficient post-translational processing, and presentation of antigenic determinants representative of a functional trimeric spike.