Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin K. Caldwell is active.

Publication


Featured researches published by Kevin K. Caldwell.


Pharmacology, Biochemistry and Behavior | 2008

Fetal Alcohol Spectrum Disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model

Kevin K. Caldwell; Sheema Sheema; Rodrigo D. Paz; Sabrina L. Samudio-Ruiz; Mary Laughlin; Nathan E. Spence; Michael J Roehlk; Sara N. Alcon; Andrea M. Allan

Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associated with behaviors that model depression, as well as with reduced BDNF levels in the hippocampal formation and/or medial frontal cortex, in a mouse model of fetal alcohol spectrum disorder (FASD). Compared to control adult mice, prenatal ethanol-exposed adult mice displayed increased learned helplessness behavior and increased immobility in the Porsolt forced swim test. Prenatal ethanol exposure was associated with decreased BDNF protein levels in the medial frontal cortex, but not the hippocampal formation, while total BDNF mRNA and BDNF transcripts containing exons III, IV or VI were reduced in both the medial frontal cortex and the hippocampal formation of prenatal ethanol-exposed mice. These results identify reduced BDNF levels in the medial frontal cortex and hippocampal formation as potential mediators of depressive disorders associated with FASD.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP

Harshal Nandurkar; Meredith J. Layton; Jocelyn Laporte; Carly Selan; Lisa Corcoran; Kevin K. Caldwell; Yasuhiro Mochizuki; Philip W. Majerus; Christina A. Mitchell

Myotubularin is a dual-specific phosphatase that dephosphorylates phosphatidylinositol 3-phosphate and phosphatidylinositol (3,5)-bisphosphate. Mutations in myotubularin result in the human disease X-linked myotubular myopathy, characterized by persistence of muscle fibers that retain an immature phenotype. We have previously reported the identification of the 3-phosphatase adapter protein (3-PAP), a catalytically inactive member of the myotubularin gene family, which coprecipitates lipid phosphatidylinositol 3-phosphate-3-phosphatase activity from lysates of human platelets. We have now identified myotubularin as the catalytically active 3-phosphatase subunit interacting with 3-PAP. A 65-kDa polypeptide, coprecipitating with endogenous 3-PAP, was purified from SDS/PAGE, subjected to trypsin digestion, and analyzed by collision-induced dissociation tandem MS. Three peptides derived from human myotubularin were identified. Association between 3-PAP and myotubularin was confirmed by reciprocal coimmunoprecipitation of both endogenous and recombinant proteins expressed in K562 cells. Recombinant myotubularin localized to the plasma membrane, causing extensive filopodia formation. However, coexpression of 3-PAP with myotubularin led to attenuation of the plasma membrane phenotype, associated with myotubularin relocalization to the cytosol. Collectively these studies indicate 3-PAP functions as an “adapter” for myotubularin, regulating myotubularin intracellular location and thereby altering the phenotype resulting from myotubularin overexpression.


Alcoholism: Clinical and Experimental Research | 2003

A Mouse Model of Prenatal Ethanol Exposure Using a Voluntary Drinking Paradigm

Andrea M. Allan; Julie Chynoweth; Lani A. Tyler; Kevin K. Caldwell

BACKGROUND The incidence of fetal alcohol spectrum disorders is estimated to be as high as 1 in 100 births. Efforts to better understand the basis of prenatal ethanol-induced impairments in brain functioning, and the mechanisms by which ethanol produces these defects, will rely on the use of animal models of fetal alcohol exposure (FAE). METHODS Using a saccharin-sweetened alcohol solution, we developed a free-choice, moderate alcohol access model of prenatal alcohol exposure. Stable drinking of a saccharin solution (0.066%) was established in female mice. Ethanol then was added to the saccharin in increasing concentrations (2%, 5%, 10% w/v) every 2 days. Water was always available, and mice consumed standard pellet chow. Control mice drank saccharin solution without ethanol. After a stable baseline of ethanol consumption (14 g/kg/day) was obtained, females were impregnated. Ethanol consumption continued throughout pregnancy and then was decreased to 0% in a step-wise fashion over a period of 6 days after pups were delivered. Characterization of the model included measurements of maternal drinking patterns, blood alcohol levels, food consumption, litter size, pup weight, pup retrieval times for the dams, and effects of FAE on performance in fear-conditioned learning and novelty exploration. RESULTS Maternal food consumption, maternal care, and litter size and number were all found to be similar for the alcohol-exposed and saccharin control animals. FAE did not alter locomotor activity in an open field but did increase the time spent inspecting a novel object introduced into the open field. FAE mice displayed reduced contextual fear when trained using a delay fear conditioning procedure. CONCLUSIONS The mouse model should be a useful tool in testing hypotheses about the neural mechanisms underlying the learning deficits present in fetal alcohol spectrum disorders. Moreover, a mouse prenatal ethanol model should increase the opportunity to use the power of genetically defined and genetically altered mouse populations.


Alcoholism: Clinical and Experimental Research | 2012

A Limited Access Mouse Model of Prenatal Alcohol Exposure that Produces Long-Lasting Deficits in Hippocampal-Dependent Learning and Memory

Megan L. Brady; Andrea M. Allan; Kevin K. Caldwell

BACKGROUND It has been estimated that approximately 12% of women consume alcohol at some time during their pregnancy, and as many as 5% of children born in the United States are impacted by prenatal alcohol exposure (PAE). The range of physical, behavioral, emotional, and social dysfunctions that are associated with PAE are collectively termed fetal alcohol spectrum disorder (FASD). METHODS Using a saccharin-sweetened ethanol solution, we developed a limited access model of PAE. C57BL/6J mice were provided access to a solution of either 10% (w/v) ethanol and 0.066% (w/v) saccharin or 0.066% (w/v) saccharin (control) for 4 h/d. After establishing consistent drinking, mice were mated and continued drinking during gestation. Following parturition, solutions were decreased to 0% in a stepwise fashion over a period of 6 days. Characterization of the model included measurements of maternal consumption patterns, blood ethanol levels, litter size, pup weight, maternal care, and the effects of PAE on fear-conditioned and spatial learning, and locomotor activity. RESULTS Mothers had mean daily ethanol intake of 7.17 ± 0.17 g ethanol/kg body weight per day, with average blood ethanol concentrations of 68.5 ± 9.2 mg/dl after 2 hours of drinking and 88.3 ± 11.5 mg/dl after 4 hours of drinking. Food and water consumption, maternal weight gain, litter size, pup weight, pup retrieval times, and time on nest did not differ between the alcohol-exposed and control animals. Compared with control offspring, mice that were exposed to ethanol prenatally displayed no difference in spontaneous locomotor activity but demonstrated learning deficits in 3 hippocampal-dependent tasks: delay fear conditioning, trace fear conditioning, and the delay nonmatch to place radial-arm maze task. CONCLUSIONS These results indicate that this model appropriately mimics the human condition of PAE and will be a useful tool in studying the learning deficits seen in FASD.


Alcoholism: Clinical and Experimental Research | 2010

Effects of a Novel Cognition-Enhancing Agent on Fetal Ethanol-Induced Learning Deficits

Daniel D. Savage; Martina J. Rosenberg; Christina Wolff; Katherine G. Akers; Ahmed El-Emawy; Miranda C. Staples; Rafael K. Varaschin; Carrie A. Wright; Jessica L. Seidel; Kevin K. Caldwell; Derek A. Hamilton

BACKGROUND Drinking during pregnancy has been associated with learning disabilities in affected offspring. At present, there are no clinically effective pharmacotherapeutic interventions for these learning deficits. Here, we examined the effects of ABT-239, a histamine H₃ receptor antagonist, on fetal ethanol-induced fear conditioning and spatial memory deficits. METHODS AND RESULTS Long-Evans rat dams stably consumed a mean of 2.82 g ethanol/kg during a 4-hour period each day during pregnancy. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, litter size and birth weights were not different between the ethanol-consuming and control groups. Female adult offspring from the control and fetal alcohol-exposed (FAE) groups received saline or 1 mg ABT-239/kg 30 minutes prior to fear conditioning training. Three days later, freezing time to the context was significantly reduced in saline-treated FAE rats compared to control. Freezing time in ABT-239-treated FAE rats was not different than that in controls. In the spatial navigation study, adult male offspring received a single injection of saline or ABT-239 30 minutes prior to 12 training trials on a fixed platform version of the Morris Water Task. All rats reached the same performance asymptote on Trials 9 to 12 on Day 1. However, 4 days later, first-trial retention of platform location was significantly worse in the saline-treated FAE rats compared control offspring. Retention by ABT-239-treated FAE rats was similar to that by controls. ABT-239s effect on spatial memory retention in FAE rats was dose dependent. CONCLUSIONS These results suggest that ABT-239 administered prior to training can improve retention of acquired information by FAE offspring on more challenging versions of hippocampal-sensitive learning tasks. Further, the differential effects of ABT-239 in FAE offspring compared to controls raises questions about the impact of fetal ethanol exposure on histaminergic neurotransmission in affected offspring.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Characterization of an adapter subunit to a phosphatidylinositol (3)P 3-phosphatase: Identification of a myotubularin-related protein lacking catalytic activity

Harshal Nandurkar; Kevin K. Caldwell; James C. Whisstock; Meredith J. Layton; E. A. Gaudet; F. A. Norris; Philip W. Majerus; Christina A. Mitchell

The D3-phosphoinositides act as second messengers by recruiting, and thereby activating, diverse signaling proteins. We have previously described the purification of a rat phosphatidylinositol 3-phosphate [PtdIns(3)P] 3-phosphatase, comprising a heterodimer of a 78-kDa adapter subunit in complex with a 65-kDa catalytic subunit. Here, we have cloned and characterized the cDNA encoding the human 3-phosphatase adapter subunit (3-PAP). Sequence alignment showed that 3-PAP shares significant sequence similarity with the protein and lipid 3-phosphatase myotubularin, and with several other members of the myotubularin gene family including SET-binding factor 1. However, unlike myotubularin, 3-PAP does not contain a consensus HCX5R catalytic motif. The 3-PAP sequence contains several motifs that predict interaction with proteins containing Src homology-2 (SH2) domains, phosphotyrosine-binding (PTB) domains, members of the 14-3-3 family, as well as proteins with SET domains. Northern blot analysis identified two transcripts (5.5 kb and 2.5 kb) with highest abundance in human liver, kidney, lung, and placenta. 3-PAP immunoprecipitates isolated from platelet cytosol hydrolyzed the D3-phosphate from PtdIns(3)P and PtdIns 3,4-bisphosphate [PtdIns(3,4)P2]. However, insect cell-expressed 3-PAP recombinant protein was catalytically inactive, confirming our prior prediction that this polypeptide represents an adapter subunit.


The Journal of Neuroscience | 2013

Moderate prenatal alcohol exposure reduces plasticity and alters NMDA receptor subunit composition in the dentate gyrus

Brady Ml; Marvin R. Diaz; Iuso A; Everett Jc; Carlos Fernando Valenzuela; Kevin K. Caldwell

Although it is well documented that heavy consumption of alcohol during pregnancy impairs brain development, it remains controversial whether moderate consumption causes significant damage. Using a limited access, voluntary consumption paradigm, we recently demonstrated that moderate prenatal alcohol exposure (MPAE) is associated with dentate gyrus-dependent learning and memory deficits that are manifested in adulthood. Here, we identified a novel mechanism that may underlie this effect of MPAE. We found that MPAE mice exhibit deficits in NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) in the dentate gyrus. Further, using semiquantitative immunoblotting techniques, we found that the levels of GluN2B subunits were decreased in the synaptic membrane, while levels of C2′-containing GluN1 and GluN3A subunits were increased, in the dentate gyrus of MPAE mice. These data suggest that MPAE alters the subunit composition of synaptic NMDARs, leading to impaired NMDAR-dependent LTP in the dentate gyrus.


Alcoholism: Clinical and Experimental Research | 2010

Hippocampal N-Methyl-D-Aspartate Receptor Subunit Expression Profiles in a Mouse Model of Prenatal Alcohol Exposure

Sabrina L. Samudio-Ruiz; Andrea M. Allan; Sheema Sheema; Kevin K. Caldwell

BACKGROUND Although several reports have been published showing prenatal ethanol exposure is associated with alterations in N-methyl-D-aspartate (NMDA) receptor subunit levels and, in a few cases, subcellular distribution, results of these studies are conflicting. METHODS We used semi-quantitative immunoblotting techniques to analyze NMDA receptor NR1, NR2A, and NR2B subunit levels in the adult mouse hippocampal formation isolated from offspring of dams who consumed moderate amounts of ethanol throughout pregnancy. We employed subcellular fractionation and immunoprecipitation techniques to isolate synaptosomal membrane- and postsynaptic density protein-95 (PSD-95)-associated pools of receptor subunits. RESULTS We found that, compared to control animals, fetal alcohol-exposed (FAE) adult mice had: (i) increased synaptosomal membrane NR1 levels with no change in association of this subunit with PSD-95 and no difference in total NR1 expression in tissue homogenates; (ii) decreased NR2A subunit levels in hippocampal homogenates, but no alterations in synaptosomal membrane NR2A levels and no change in NR2A-PSD-95 association; and (iii) no change in tissue homogenate or synaptosomal membrane NR2B levels but a reduction in PSD-95-associated NR2B subunits. No alterations were found in mRNA levels of NMDA receptor subunits suggesting that prenatal alcohol-associated differences in subunit protein levels are the result of differences in post-transcriptional regulation of subunit localization. CONCLUSIONS Our results demonstrate that prenatal alcohol exposure induces selective changes in NMDA receptor subunit levels in specific subcellular locations in the adult mouse hippocampal formation. Of particular interest is the finding of decreased PSD-95-associated NR2B levels, suggesting that synaptic NR2B-containing NMDA receptor concentrations are reduced in FAE animals. This result is consistent with various biochemical, physiological, and behavioral findings that have been linked with prenatal alcohol exposure.


Journal of Neurochemistry | 2009

Prenatal ethanol exposure persistently impairs NMDA receptor‐dependent activation of extracellular signal‐regulated kinase in the mouse dentate gyrus

Sabrina L. Samudio-Ruiz; Andrea M. Allan; Carlos Fernando Valenzuela; Nora I. Perrone-Bizzozero; Kevin K. Caldwell

The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal‐dependent learning deficits and a decreased ability to elicit long‐term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal‐regulated kinase 1/2 (ERK1/2) signaling cascade by NMDA receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol‐exposed adult animals would have deficits in hippocampal NMDA receptor‐dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA‐stimulated ERK1/2 activation in acute hippocampal slices prepared from adult fetal alcohol‐exposed mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor‐dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life‐long cognitive deficits, associated with prenatal alcohol exposure.


Pharmacology, Biochemistry and Behavior | 2004

Fear conditioning is associated with altered integration of PLC and ERK signaling in the hippocampus.

Colin T. Buckley; Kevin K. Caldwell

The extracellular signal-regulated protein kinases (ERKs) are proline-directed, serine/threonine kinases that regulate a variety of cellular functions, including proliferation, differentiation, and plasticity. In the present report, we provide evidence that ERK2 and phosphatidylinositol-specific phospholipase C (PLC)-beta and -gamma isozymes interact in the rat hippocampal formation. We found that anti-PLC-beta1a, -beta2, -beta4, -gamma1 and -gamma2, but not -beta3, immune complexes isolated from rat hippocampal formation postnuclear fractions contain anti-ERK2 immunoreactivity. Further, we show that PLC catalytic activity is associated with anti-ERK2 immunoprecipitates isolated from the hippocampal formation, and that the amount of enzyme activity is significantly increased following fear-conditioned learning. The observed interactions may be mediated by consensus sequences conforming to an ERK2 docking site, termed a D-domain, that we identified in PLC-beta1a, -beta2, -beta4 -gamma1 and -gamma2. Based on these results, we propose that PLC-beta and PLC-gamma isozymes form signaling complexes with ERK2 in rat brain, and these complexes play critical roles in learning and memory, as well as a variety of other neuronal functions.

Collaboration


Dive into the Kevin K. Caldwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip W. Majerus

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinay S. Bansal

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge