Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin L. Denis is active.

Publication


Featured researches published by Kevin L. Denis.


Proceedings of SPIE | 2014

CLASS: The Cosmology Large Angular Scale Surveyor

Thomas Essinger-Hileman; Aamir Ali; M. Amiri; J. W. Appel; Derek Araujo; C. L. Bennett; Fletcher Boone; Manwei Chan; H. M. Cho; David T. Chuss; Felipe Colazo; Erik Crowe; Kevin L. Denis; Rolando Dünner; Joseph R. Eimer; Dominik Gothe; M. Halpern; Kathleen Harrington; G. C. Hilton; G. Hinshaw; Caroline Huang; K. D. Irwin; Glenn Jones; John Karakla; A. Kogut; D. Larson; M. Limon; Lindsay Lowry; Tobias A. Marriage; Nicholas Mehrle

The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitationalwave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low ɺ. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, Ƭ .


Journal of Applied Physics | 2014

Precision control of thermal transport in cryogenic single-crystal silicon devices

Karwan Rostem; David T. Chuss; Felipe Colazo; Erik Crowe; Kevin L. Denis; Nathan P. Lourie; S. H. Moseley; Thomas R. Stevenson; Edward J. Wollack

We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path l is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than l, even when the surface is fairly smooth, 5–10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order l, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that s...


Proceedings of SPIE | 2014

The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters

J. W. Appel; Aamir Ali; M. Amiri; Derek Araujo; Charles L. Bennet; Fletcher Boone; Manwei Chan; H. M. Cho; David T. Chuss; Felipe Colazo; Erik Crowe; Kevin L. Denis; Rolando Dünner; Joseph R. Eimer; Thomas Essinger-Hileman; Dominik Gothe; M. Halpern; Kathleen Harrington; G. C. Hilton; G. Hinshaw; Caroline Huang; K. D. Irwin; Glenn Jones; John Karakula; A. Kogut; D. Larson; M. Limon; Lindsay Lowry; Tobias A. Marriage; Nicholas Mehrle

The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.


THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13 | 2009

Fabrication of an Antenna‐Coupled Bolometer for Cosmic Microwave Background Polarimetry

Kevin L. Denis; N. Cao; David T. Chuss; Joseph R. Eimer; J. Hinderks; Wen-Ting Hsieh; S. H. Moseley; Thomas R. Stevenson; D. J. Talley; K. U.‐Yen; Edward J. Wollack

We describe the development of a detector for precise measurements of the cosmic microwave background polarization. The detector employs a waveguide to couple light between a pair of Mo/Au superconducting transition edge sensors (TES) and a feedhorn. Incorporation of an on‐chip ortho‐mode transducer (OMT) results in high isolation. The OMT is micromachined and bonded to the microstrip and TES circuits in a low temperature wafer bonding process. The wafer bonding process incorporates a buried superconducting niobium layer with a single crystal silicon layer which serves as the leg isolated TES membrane and as the microstrip dielectric. We describe the micromachining and wafer bonding process and report measurement results of the microwave circuitry operating in the 29–45 GHz band along with Johnson noise measurements of the TES membrane structures and development of Mo/Au TES operating under 100 mK.


Proceedings of SPIE | 2016

The Cosmology Large Angular Scale Surveyor

Kathleen Harrington; Tobias A. Marriage; Aamir Ali; J. W. Appel; C. L. Bennett; Fletcher Boone; Michael Brewer; Manwei Chan; David T. Chuss; Felipe Colazo; Sumit Dahal; Kevin L. Denis; Rolando Dünner; Joseph R. Eimer; Thomas Essinger-Hileman; Pedro Fluxa; M. Halpern; G. C. Hilton; G. Hinshaw; J. Hubmayr; Jeffery Iuliano; John Karakla; Jeff McMahon; Nathan T. Miller; S. H. Moseley; Gonzalo A. Palma; Lucas Parker; Matthew Petroff; Bastián Pradenas; Karwan Rostem

The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).


Proceedings of SPIE | 2014

Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications

Karwan Rostem; Aamir Ali; J. W. Appel; C. L. Bennett; David T. Chuss; Felipe Colazo; Erik Crowe; Kevin L. Denis; T. Essinger-Hileman; Tobias A. Marriage; S. H. Moseley; Thomas R. Stevenson; Deborah Towner; Kongpop U-Yen; Edward J. Wollack

We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.


IEEE Transactions on Applied Superconductivity | 2013

Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

Erik Crowe; C. L. Bennett; David T. Chuss; Kevin L. Denis; Joseph R. Eimer; Nathan P. Lourie; Tobias A. Marriage; S. H. Moseley; Karwan Rostem; Thomas R. Stevenson; Deborah Towner; Kongpop U-Yen; Edward J. Wollack

The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universes history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs, we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04-mm-long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.


Proceedings of SPIE | 2007

Microshutter array system for James Webb Space Telescope

Mary Li; T. Adachi; Christine A. Allen; Sachidananda R. Babu; Sateesh Bajikar; Michael Beamesderfer; Ruth Bradley; Nick Costen; Kevin L. Denis; Audrey J. Ewin; David Franz; Larry Hess; Ron Hu; Kamili M. Jackson; Murzy D. Jhabvala; Dan Kelly; Todd King; Gunther Kletetschka; Alexander S. Kutyrev; Bernard A. Lynch; Stephen E. Meyer; Timothy M. Miller; S. H. Moseley; Vilem Mikula; Brent Mott; Lance Oh; James Pontius; David A. Rapchun; Chris Ray; Scott Schwinger

We have developed microshutter array systems at NASA Goddard Space Flight Center for use as multi-object aperture arrays for a Near-Infrared Spectrometer (NIRSpec) instrument. The instrument will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope, after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light from objected galaxies in space with high efficiency and high contrast. Arrays are close-packed silicon nitride membranes with a pixel size close to 100x200 μm. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with minimized stress concentration. In order to enhance optical contrast, light shields are made on each shutter to prevent light leak. Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS bulk-micromachining and packaged utilizing a novel single-sided indium flip-chip bonding technology. The MSA flight system consists of a mosaic of 2 x 2 format of four fully addressable 365 x 171 arrays. The system will be placed in the JWST optical path at the focal plane of NIRSpec detectors. MSAs that we fabricated passed a series of qualification tests for flight capabilities. We are in the process of making final flight-qualified MSA systems for the JWST mission.


Proceedings of SPIE | 2012

Detector Architecture of the Cosmology Large Angular Scale Surveyor

Karwan Rostem; C. L. Bennett; David T. Chuss; Nick Costen; Erik Crowe; Kevin L. Denis; Joseph R. Eimer; N. Lourie; T. Essinger-Hileman; Tobias A. Marriage; S. H. Moseley; Thomas R. Stevenson; Deborah Towner; George M. Voellmer; Edward J. Wollack; Lingzhen Zeng

The cosmic microwave background (CMB) provides a powerful tool for testing modern cosmology. In particular, if inflation has occurred, the associated gravitational waves would have imprinted a specific polarized pattern on the CMB. Measurement of this faint polarized signature requires large arrays of polarization-sensitive, background- limited detectors, and an unprecedented control over systematic effects associated with instrument design. To this end, the ground-based Cosmology Large Angular Scale Surveyor (CLASS) employs large-format, feedhorn- coupled, background-limited Transition-Edge Sensor (TES) bolometer arrays operating at 40, 90, and 150 GHz bands. The detector architecture has several enabling technologies. An on-chip symmetric planar orthomode transducer (OMT) is employed that allows for highly symmetric beams and low cross-polarization over a wide bandwidth. Furthermore, the quarter-wave backshort of the OMT is integrated using an innovative indium bump bonding process at the chip level that ensures minimum loss, maximum repeatability and performance uniformity across an array. Care has been taken to reduce stray light and on-chip leakage. In this paper, we report on the architecture and performance of the first prototype detectors for the 40 GHz focal plane.


Proceedings of SPIE, the International Society for Optical Engineering | 2007

Complex MEMS device: microshutter array system for space applications

Mary J. Li; Tomoko Adachi; Christine A. Allen; Sachi Babu; Sateesh Bajikar; Michael Beamesderfer; Ruth Bradley; Kevin L. Denis; Nick Costen; Audrey J. Ewin; Dave Franz; Larry Hess; Ron Hu; Kamili M. Jackson; Murzy D. Jhabvala; Dan Kelly; Todd King; Gunther Kletetschka; Alexander S. Kutyrev; Barney Lynch; Timothy M. Miller; Harvey Moseley; Vilem Mikula; Brent Mott; Lance Oh; James Pontius; Dave Rapchun; Chris Ray; Knute Ray; Eric Schulte

A complex MEMS device, microshutter array system, is being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instrument will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. Arrays are close-packed silicon nitride membranes with a pixel size close to 100x200 &mgr;m. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast. Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS bulk-micromachining technologies and packaged using single-sided indium flip-chip bonding technology. The MSA flight concept consists of a mosaic of 2 x 2 format of four fully addressable 365 x 171 arrays placed in the JWST optical path at the focal plane.

Collaboration


Dive into the Kevin L. Denis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward J. Wollack

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

C. L. Bennett

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kongpop U-Yen

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Karwan Rostem

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

S. H. Moseley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. W. Appel

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge