Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin L. Klette is active.

Publication


Featured researches published by Kevin L. Klette.


Brain Research | 1995

σ receptor-mediated neuroprotection against glutamate toxicity in primary rat neuronal cultures

Mark A. DeCoster; Kevin L. Klette; Eric S. Knight; Frank C. Tortella

The role of the putative sigma receptor in mediating neuroprotection against glutamate-induced neuronal injury was examined in mature cultured rat cortical neurons. With the exception of the selective sigma 1 ligand (+)-3-PPP, all of the sigma ligands tested were neuroprotective, preventing glutamate-induced morphological changes and increases in LDH release. Their rank order of neuroprotective potency (and EC50 values) was as follows: (+)-SKF 10,047 (0.81 microM) > (+)- cyclazocine (2.3 microM) > dextromethorphan (3.1 microM) = haloperidol (3.7 microM) > (+)-pentazocine (8.5 microM) > DTG (42.7 microM) = carbetapentane (46.3 microM). When corrected for relative sigma versus PCP binding affinity, it appears that a positive correlation exists between neuroprotective potency and sigma 1 site affinity. However, there does not appear to be a significant correlation between neuroprotective potency and the sigma 2 site. Critically, none of the sigma ligands were neurotoxic when tested alone at concentrations at least 5-30 times their respective neuroprotective EC50 values. Results from preliminary experiments with the selective sigma 1 ligand (+)-pentazocine indicated that sigma-mediated neuroprotection may involve the buffering of glutamate-induced calcium flux. Collectively, the results of these in vitro experiments demonstrate that sigma ligands are neuroprotective and therefore deserve further exploration as potential therapeutic agents in in vivo models of CNS injury and neurodegenerative disorders.


Brain Research | 1995

Role of calcium in sigma-mediated neuroprotection in rat primary cortical neurons

Kevin L. Klette; Mark A. DeCoster; J.E. Moreton; Frank C. Tortella

Since unique calcium dynamics have been reported for toxic (40-80 M) and non-toxic (5-10 microM) concentrations of glutamate, we evaluated the effect of neuroprotective sigma ligands on glutamate and potassium chloride (KCl)-stimulated changes in [Ca2+]i using 12-15 day old primary rat neuronal cortical cultures. In approximately 80% of the neurons tested, 80 microM glutamate caused a sustained calcium flux previously shown to be associated with neurotoxicity. The majority of sigma ligands that were evaluated altered glutamate-induced calcium flux. For example, the primary effect of maximally neuroprotective concentrations of the sigma ligands dextromethorphan, (+)-pentazocine, (+)-cyclazocine, (+)-SKF 10047, carbetapentane and haloperidol was a shift from a sustained, to either a biphasic or a monophasic transient calcium response indicative of neuroprotection. (+)-3-PPP, previously shown not to be neuroprotective in this model system, failed to alter glutamate-induced calcium flux. In contrast to glutamate, KCl (50 mM) produced changes in [Ca2+]i which were not neurotoxic to the neurons as measured by LDH release. The primary response observed in 59% of the neurons treated with 50 mM KCl alone was an initial spike in [Ca2+]i which abruptly declined then plateaued above basal levels throughout the 12 min of analysis (modified sustained response). The highly selective sigma ligands produced a shift from the modified sustained response to a monophasic transient calcium response. Again, (+)-3-PPP had no effect on KCl-induced calcium dynamics. Of the PCP-related sigma ligands only (+)-SKF-10047 consistently attenuated the KCl-induced calcium flux. Collectively, these results indicate that modulation of [Ca2+]i through receptor and voltage-gated calcium channels contributes significantly to sigma mediated neuroprotection.


Clinical Chemistry | 2003

Urinary Cannabinoid Detection Times after Controlled Oral Administration of Δ9-Tetrahydrocannabinol to Humans

Richard A. Gustafson; Barry Levine; Peter R. Stout; Kevin L. Klette; M.P. George; Eric T. Moolchan; Marilyn A. Huestis

BACKGROUND Urinary cannabinoid excretion and immunoassay performance were evaluated by semiquantitative immunoassay and gas chromatography-mass spectrometry (GC/MS) analysis of metabolite concentrations in 4381 urine specimens collected before, during, and after controlled oral administration of tetrahydrocannabinol (THC). METHODS Seven individuals received 0, 0.39, 0.47, 7.5, and 14.8 mg THC/day in this double-blind, placebo-controlled, randomized, clinical study conducted on a closed research ward. THC doses (hemp oils with various THC concentrations and the therapeutic drug Marinol) were administered three times daily for 5 days. All urine voids were collected over the 10-week study and later tested by Emit II, DRI, and CEDIA immunoassays and by GC/MS. Detection rates, detection times, and sensitivities, specificities, and efficiencies of the immunoassays were determined. RESULTS At the federally mandated immunoassay cutoff (50 microg/L), mean detection rates were <0.2% during ingestion of the two low doses typical of current hemp oil THC concentrations. The two high doses produced mean detection rates of 23-46% with intermittent positive tests up to 118 h. Maximum metabolite concentrations were 5.4-38.2 microg/L for the low doses and 19.0-436 micro g/L for the high doses. Emit II, DRI, and CEDIA immunoassays had similar performance efficiencies of 92.8%, 95.2%, and 93.9%, respectively, but differed in sensitivity and specificity. CONCLUSIONS The use of cannabinoid-containing foodstuffs and cannabinoid-based therapeutics, and continued abuse of oral cannabis require scientific data for accurate interpretation of cannabinoid tests and for making reliable administrative drug-testing policy. At the federally mandated cannabinoid cutoffs, it is possible but unlikely for a urine specimen to test positive after ingestion of manufacturer-recommended doses of low-THC hemp oils. Urine tests have a high likelihood of being positive after Marinol therapy. The Emit II and DRI assays had adequate sensitivity and specificity, but the CEDIA assay failed to detect many true-positive specimens.


Journal of Chromatography B: Biomedical Sciences and Applications | 1999

Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD

Gregory K. Poch; Kevin L. Klette; Domingo A. Hallare; Marilyn G. Manglicmot; Robert J. Czarny; Lisa K. McWhorter; Cynthia J. Anderson

Seventy-four urine specimens previously found to contain lysergic acid diethylamide (LSD) by gas chromatography-mass spectrometry (GC-MS) were analyzed by a new procedure for the LSD metabolite 2-oxo-3-hydroxy-LSD (O-H-LSD) using a Finnigan LC-MS-MS system. This procedure proved to be less complex, shorter to perform and provides cleaner chromatographic characteristics than the method currently utilized by the Navy Drug Screening Laboratories for the extraction of LSD from urine by GC-MS. All of the specimens used in the study screened positive for LSD by radioimmunoassay (Roche Abuscreen). Analysis by GC-MS revealed detectable amounts of LSD in all of the specimens. In addition, isolysergic diethylamide (iso-LSD), a byproduct of LSD synthesis, was quantitated in 64 of the specimens. Utilizing the new LC-MS-MS method, low levels of N-desmethyl-LSD (nor-LSD), another identified LSD metabolite, were detected in some of the specimens. However, all 74 specimens contained O-H-LSD at significantly higher concentrations than LSD, iso-LSD, or nor-LSD alone. The O-H-LSD concentration ranged from 732 to 112 831 pg/ml (mean, 16340 pg/ml) by quantification with an internal standard. The ratio of O-H-LSD to LSD ranged from 1.1 to 778.1 (mean, 42.9). The presence of O-H-LSD at substantially higher concentrations than LSD suggests that the analysis for O-H-LSD as the target analyte by employing LC-MS-MS will provide a much longer window of detection for the use of LSD than the analysis of the parent compound, LSD.


Journal of Forensic Sciences | 2004

Evaluation of ephedrine, pseudoephedrine and phenylpropanolamine concentrations in human urine samples and a comparison of the specificity of DRI amphetamines and Abuscreen online (KIMS) amphetamines screening immunoassays.

Peter R. Stout; Kevin L. Klette; Carl K. Horn

The purpose of this study was to evaluate the ability of two amphetamine class screening reagents to exclude ephedrine (EPH), pseudoephedrine (PSEPH), and phenylpropanolamine (PPA) from falsely producing positive immunoassay screening results. The study also sought to characterize the prevalence and concentration distributions of EPH, PSEPH, and PPA in samples that produced positive amphetamine screening results. Approximately 27,400 randomly collected human urine samples from Navy and Marine Corps members were simultaneously screened for amphetamines using the DRI and Abuscreen online immunoassays at a cutoff concentration of 500 ng/mL. All samples that screened positive were confirmed for amphetamine (AMP), methamphetamine (MTH), 3,4-Methylenedioxyamphetamine (MDA), 3,4-Methylenedioxymethamphetamine (MDMA), EPH, PSEPH, and PPA by gas chromatography/mass spectrometry (GC/MS). The DRI AMP immunoassay identified 1,104 presumptive amphetamine positive samples, of which only 1.99% confirmed positive for the presence of AMP, MTH, MDA, or MDMA. In contrast, the online AMP reagent identified 317 presumptive amphetamine positives with a confirmation rate for AMP, MTH, MDA, or MDMA of 7.94%. The presence of EPH, PSEPH, or PPA was confirmed in 833 of the 1,104 samples that failed to confirm positive for AMP, MTH, MDA, or MDMA; all of the 833 samples contained PSEPH. When compared to the entire screened sample set, PSEPH was present in approximately 3%, EPH in 0.9%, and PPA in 0.8% of the samples. The results indicate that cross reactivities for EPH, PSEPH, and PPA are greater than reported by the manufacturer of these reagents. The distribution of concentrations indicates that very large concentrations of EPH, PSEPH, and PPA are common.


Drug Testing and Analysis | 2015

Quantitative urine confirmatory testing for synthetic cannabinoids in randomly collected urine specimens.

Marisol S. Castaneto; Karl B. Scheidweiler; Adarsh S. Gandhi; Ariane Wohlfarth; Kevin L. Klette; Thomas M. Martin; Marilyn A. Huestis

Synthetic cannabinoid intake is an ongoing health issue worldwide, with new compounds continually emerging, making drug testing complex. Parent synthetic cannabinoids are rarely detected in urine, the most common matrix employed in workplace drug testing. Optimal identification of synthetic cannabinoid markers in authentic urine specimens and correlation of metabolite concentrations and toxicities would improve synthetic cannabinoid result interpretation. We screened 20 017 randomly collected US military urine specimens between July 2011 and June 2012 with a synthetic cannabinoid immunoassay yielding 1432 presumptive positive specimens. We analyzed all presumptive positive and 1069 negative specimens with our qualitative synthetic cannabinoid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which confirmed 290 positive specimens. All 290 positive and 487 randomly selected negative specimens were quantified with the most comprehensive urine quantitative LC-MS/MS method published to date; 290 specimens confirmed positive for 22 metabolites from 11 parent synthetic cannabinoids. The five most predominant metabolites were JWH-018 pentanoic acid (93%), JWH-N-hydroxypentyl (84%), AM2201 N-hydroxypentyl (69%), JWH-073 butanoic acid (69%), and JWH-122 N-hydroxypentyl (45%) with 11.1 (0.1-2,434), 5.1 (0.1-1,239), 2.0 (0.1-321), 1.1 (0.1-48.6), and 1.1 (0.1-250) µg/L median (range) concentrations, respectively. Alkyl hydroxy and carboxy metabolites provided suitable biomarkers for 11 parent synthetic cannabinoids; although hydroxyindoles were also observed. This is by far the largest data set of synthetic cannabinoid metabolites urine concentrations from randomly collected workplace drug testing specimens rather than acute intoxications or driving under the influence of drugs. These data improve the interpretation of synthetic cannabinoid urine test results and suggest suitable urine markers of synthetic cannabinoid intake.


Clinical Chemistry and Laboratory Medicine | 2015

Urinary prevalence, metabolite detection rates, temporal patterns and evaluation of suitable LC-MS/MS targets to document synthetic cannabinoid intake in US military urine specimens.

Ariane Wohlfarth; Karl B. Scheidweiler; Marisol S. Castaneto; Adarsh S. Gandhi; Nathalie A. Desrosiers; Kevin L. Klette; Thomas M. Martin; Marilyn A. Huestis

Abstract Background: Identifying synthetic cannabinoid designer drug abuse challenges toxicologists and drug testing programs. The best analytical approach for reliably documenting intake of emerging synthetic cannabinoids is unknown. Primarily metabolites are found in urine, but optimal metabolite targets remain unknown, and definitive identification is complicated by converging metabolic pathways. Methods: We screened 20,017 US military urine specimens collected from service members worldwide for synthetic cannabinoids between July 2011 and June 2012. We confirmed 1432 presumptive positive and 1069 presumptive negative specimens by qualitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis including 29 biomarkers for JWH-018, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, RCS-4, AM2201 and MAM2201. Specimen preparation included enzyme hydrolysis and acetonitrile precipitation prior to LC-MS/MS analysis. We evaluated individual synthetic cannabinoid metabolite detection rates, prevalence, temporal patterns and suitable targets for analytical procedures. Results: Prevalence was 1.4% with 290 confirmed positive specimens, 92% JWH-018, 54% AM2201 and 39% JWH-122 metabolites. JWH-073, JWH-210 and JWH-250 also were identified in 37%, 4% and 8% of specimens, respectively. The United States Army Criminal Investigation Command seizure pattern for synthetic cannabinoid compounds matched our urine specimen results over the time frame of the study. Apart from one exception (AM2201), no parent compounds were observed. Conclusions: Hydroxyalkyl metabolites accounted for most confirmed positive tests, and in many cases, two metabolites were identified, increasing confidence in the results, and improving detection rates. These data also emphasize the need for new designer drug metabolism studies to provide relevant targets for synthetic cannabinoid identification.


Drug Testing and Analysis | 2015

Performance characteristics of an ELISA screening assay for urinary synthetic cannabinoids

Eliani Spinelli; Allan J. Barnes; Sheena Young; Marisol S. Castaneto; Thomas M. Martin; Kevin L. Klette; Marilyn A. Huestis

Synthetic cannabinoids are marketed as legal alternatives to cannabis, as routine urine cannabinoid immunoassays do not detect synthetic cannabinoids. Laboratories are challenged to identify these new designer drugs that are widely available and represent a major public health and safety problem. Immunoassay testing offers rapid separation of presumptive positive and negative specimens, prior to more costly and time-consuming chromatographic confirmation. The Neogen SPICE ELISA kit targets JWH-018 N-pentanoic acid as a marker for urinary synthetic cannabinoids. Assay performance was evaluated by analyzing 2469 authentic urine samples with the Neogen immunoassay and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two immunoassay cut-off concentrations, 5 and 10 µg/L, classified samples as presumptive positive or negative, followed by qualitative LC-MS/MS confirmation for 29 synthetic cannabinoids markers with limits of detection of 0.5-10 µg/L to determine the assays sensitivity, specificity and efficacy. Challenges at ±25% of each cut-off also were investigated to determine performance around the cut-off and intra- and inter-plate imprecision. The immunoassay was linear from 1 to 250 µg/L (r(2)  = 0.992) with intra- and inter-plate imprecision of ≤5.3% and <9%, respectively. Sensitivity, specificity, and efficiency results with the 5 µg/L cut-off were 79.9%, 99.7%, and 97.4% and with the 10 µg/L cut-off 69.3%, 99.8%, and 96.3%, respectively. Cross-reactivity was shown for 18 of 73 synthetic cannabinoids markers evaluated. Good sensitivity, specificity, and efficiency, lack of sample preparation requirements, and rapid semi-automation documented that the Neogen SPICE ELISA kit is a viable method for screening synthetic cannabinoids in urine targeting JWH-018 N-pentanoic acid.


Bioanalysis | 2014

Method validation of the biochip array technology for synthetic cannabinoids detection in urine

Marisol S. Castaneto; Nathalie A. Desrosiers; Kayla N. Ellefsen; Sebastien Anizan; Thomas M. Martin; Kevin L. Klette; Marilyn A. Huestis

BACKGROUND Synthetic cannabinoids (SC) are widely-abused cannabimimetic drugs that do not screen positive in traditional cannabinoids immunoassays, making detection difficult. METHODS AND RESULTS The first commercially-available immunoassay for urinary SC was validated. Limits of detection (5-20 µg/L), imprecision (<13.1% intra-, <37.7% inter-assay), and cross-reactivity profiles of 22 SC and 37 metabolites were obtained. A large negative bias (-80.8 to -28.0%) was observed. Sensitivity (98.3%), specificity (48.1%) and efficiency (53.9%) were determined from screening 20,017 urine specimens and confirming 1432 presumptive positive and 1069 selected negative specimens by LC-MS/MS. Cutoff optimization improved performance to 87.6% sensitivity, 85.2% specificity, and 85.4% efficiency. CONCLUSION This high-throughput urine SC assay has good sensitivity and improved specificity and efficiency at modified cutoff concentrations.


Forensic Science International | 1992

Toxicological findings in military aircraft fatalities from 1986-1990

Kevin L. Klette; Barry Levine; Charles Springate; Michael L. Smith

Toxicological findings in all military aircraft fatalities investigated by the Division of Forensic Toxicology at the Armed Forces Institute of Pathology from 1986-1990 are presented. Carbon monoxide saturation levels greater than 10% were found in 4% of the 535 cases where appropriate specimens were collected. Positive ethanol findings were more indicative of postmortem formation than antemortem consumption. In only 1 case were abused drugs (cannabinoids in a passenger) detected. Other drugs identified included nicotine, chloroquine and over-the-counter analgesic agents, antihistamines and sympathomimetic drugs.

Collaboration


Dive into the Kevin L. Klette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marilyn A. Huestis

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Michael L. Smith

Armed Forces Institute of Pathology

View shared research outputs
Top Co-Authors

Avatar

Barry Levine

Armed Forces Institute of Pathology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Martin

Office of the Secretary of Defense

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Jacobs

Armed Forces Institute of Pathology

View shared research outputs
Top Co-Authors

Avatar

John Jemionek

Armed Forces Institute of Pathology

View shared research outputs
Top Co-Authors

Avatar

Joseph Magluilo

Armed Forces Institute of Pathology

View shared research outputs
Researchain Logo
Decentralizing Knowledge