Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin L. Vergin is active.

Publication


Featured researches published by Kevin L. Vergin.


Nature | 2002

SAR11 clade dominates ocean surface bacterioplankton communities

Robert M. Morris; Michael S. Rappé; Stephanie A. Connon; Kevin L. Vergin; William A. Siebold; Craig A. Carlson; Stephen J. Giovannoni

The most abundant class of bacterial ribosomal RNA genes detected in seawater DNA by gene cloning belongs to SAR11—an α-proteobacterial clade. Other than indications of their prevalence in seawater, little is known about these organisms. Here we report quantitative measurements of the cellular abundance of the SAR11 clade in northwestern Sargasso Sea waters to 3,000 m and in Oregon coastal surface waters. On average, the SAR11 clade accounts for a third of the cells present in surface waters and nearly a fifth of the cells present in the mesopelagic zone. In some regions, members of the SAR11 clade represent as much as 50% of the total surface microbial community and 25% of the subeuphotic microbial community. By extrapolation, we estimate that globally there are 2.4 × 1028 SAR11 cells in the oceans, half of which are located in the euphotic zone. Although the biogeochemical role of the SAR11 clade remains uncertain, these data support the conclusion that this microbial group is among the most successful organisms on Earth.


Nature | 2002

Cultivation of the ubiquitous SAR11 marine bacterioplankton clade

Michael S. Rappé; Stephanie A. Connon; Kevin L. Vergin; Stephen J. Giovannoni

The α-proteobacterial lineage that contains SAR11 and related ribosomal RNA gene clones was among the first groups of organisms to be identified when cultivation-independent approaches based on rRNA gene cloning and sequencing were applied to survey microbial diversity in natural ecosystems. This group accounts for 26% of all ribosomal RNA genes that have been identified in sea water and has been found in nearly every pelagic marine bacterioplankton community studied by these methods. The SAR11 clade represents a pervasive problem in microbiology: despite its ubiquity, it has defied cultivation efforts. Genetic evidence suggests that diverse uncultivated microbial taxa dominate most natural ecosystems, which has prompted widespread efforts to elucidate the geochemical activities of these organisms without the benefit of cultures for study. Here we report the isolation of representatives of the SAR11 clade. Eighteen cultures were initially obtained by means of high-throughput procedures for isolating cell cultures through the dilution of natural microbial communities into very low nutrient media. Eleven of these cultures have been successfully passaged and cryopreserved for future study. The volume of these cells, about 0.01 µm3, places them among the smallest free-living cells in culture.


Nature | 2005

Proteorhodopsin in the ubiquitous marine bacterium SAR11

Stephen J. Giovannoni; Lisa Bibbs; Jang-Cheon Cho; Martha Stapels; Russell A. Desiderio; Kevin L. Vergin; Michael S. Rappé; Samuel R. Laney; Lawrence J. Wilhelm; H. James Tripp; Eric J. Mathur; Douglas F. Barofsky

Proteorhodopsins are light-dependent proton pumps that are predicted to have an important role in the ecology of the oceans by supplying energy for microbial metabolism. Proteorhodopsin genes were first discovered through the cloning and sequencing of large genomic DNA fragments from seawater. They were later shown to be widely distributed, phylogenetically diverse, and active in the oceans. Proteorhodopsin genes have not been found in cultured bacteria, and on the basis of environmental sequence data, it has not yet been possible to reconstruct the genomes of uncultured bacterial strains that have proteorhodopsin genes. Although the metabolic effect of proteorhodopsins is uncertain, they are thought to function in cells for which the primary mode of metabolism is the heterotrophic assimilation of dissolved organic carbon. Here we report that SAR11 strain HTCC1062 (‘Pelagibacter ubique’), the first cultivated member of the extraordinarily abundant SAR11 clade, expresses a proteorhodopsin gene when cultured in autoclaved seawater and in its natural environment, the ocean. The Pelagibacter proteorhodopsin functions as a light-dependent proton pump. The gene is expressed by cells grown in either diurnal light or in darkness, and there is no difference between the growth rates or cell yields of cultures grown in light or darkness.


The ISME Journal | 2009

Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea

Craig A. Carlson; Robert M. Morris; Rachel Parsons; Alexander H. Treusch; Stephen J. Giovannoni; Kevin L. Vergin

Bacterioplankton belonging to the SAR11 clade of a-proteobacteria were counted by fluorescence in situ hybridization (FISH) over eight depths in the surface 300 m at the Bermuda Atlantic Time-series Study (BATS) site from 2003 to 2005. SAR11 are dominant heterotrophs in oligotrophic systems; thus, resolving their temporal dynamics can provide important insights to the cycling of organic and inorganic nutrients. This quantitative time-series data revealed distinct annual distribution patterns of SAR11 abundance in the euphotic (0–120) and upper mesopelagic (160–300 m) zones that were reproducibly correlated with seasonal mixing and stratification of the water column. Terminal restriction fragment length polymorphism (T-RFLP) data generated from a decade of samples collected at BATS were combined with the FISH data to model the annual dynamics of SAR11 subclade populations. 16S rRNA gene clone libraries were constructed to verify the correlation of the T-RFLP data with SAR11 clade structure. Clear vertical and temporal transitions were observed in the dominance of three SAR11 ecotypes. The mechanisms that lead to shifts between the different SAR11 populations are not well understood, but are probably a consequence of finely tuned physiological adaptations that partition the populations along physical and chemical gradients in the ecosystem. The correlation between evolutionary descent and temporal/spatial patterns we describe, confirmed that a minimum of three SAR11 ecotypes occupy the Sargasso Sea surface layer, and revealed new details of their population dynamics.


Nature | 2013

Abundant SAR11 viruses in the ocean

Yanlin Zhao; Ben Temperton; J. Cameron Thrash; Michael S. Schwalbach; Kevin L. Vergin; Zachary C. Landry; Mark H. Ellisman; Tom Deerinck; Matthew B. Sullivan; Stephen J. Giovannoni

Several reports proposed that the extraordinary dominance of the SAR11 bacterial clade in ocean ecosystems could be a consequence of unusual mechanisms of resistance to bacteriophage infection, including ‘cryptic escape’ through reduced cell size and/or K-strategist defence specialism. Alternatively, the evolution of high surface-to-volume ratios coupled with minimal genomes containing high-affinity transporters enables unusually efficient metabolism for oxidizing dissolved organic matter in the world’s oceans that could support vast population sizes despite phage susceptibility. These ideas are important for understanding plankton ecology because they emphasize the potentially important role of top-down mechanisms in predation, thus determining the size of SAR11 populations and their concomitant role in biogeochemical cycling. Here we report the isolation of diverse SAR11 viruses belonging to two virus families in culture, for which we propose the name ‘pelagiphage’, after their host. Notably, the pelagiphage genomes were highly represented in marine viral metagenomes, demonstrating their importance in nature. One of the new phages, HTVC010P, represents a new podovirus subfamily more abundant than any seen previously, in all data sets tested, and may represent one of the most abundant virus subfamilies in the biosphere. This discovery disproves the theory that SAR11 cells are immune to viral predation and is consistent with the interpretation that the success of this highly abundant microbial clade is the result of successfully evolved adaptation to resource competition.


The ISME Journal | 2009

Seasonality and vertical structure of microbial communities in an ocean gyre.

Alexander H. Treusch; Kevin L. Vergin; Liam A. Finlay; Michael G Donatz; Robert M. Burton; Craig A. Carlson; Stephen J. Giovannoni

Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.


Science | 2012

Seasonality in Ocean Microbial Communities

Stephen J. Giovannoni; Kevin L. Vergin

Spring Bloom The spring bloom of plankton in northern seas develops apparently in response to increasing light and to winter weather, which make nutrients available at the surface. This seasonality is important on a global scale because it reflects a tipping point, driven by phytoplankton growth, between CO2 production and carbon storage. The phenomenon is thus of particular interest in this era of carbon excess. Giovannoni and Vergin (p. 671) review what is known about the dynamics of these highly ordered microbial plankton communities, discuss the specialist roles of certain taxa, and reflect on predictions for anthropogenic changes to the oceans and what these might mean for geochemical cycles driven by ocean microbiota. Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.


Environmental Microbiology | 2008

The small genome of an abundant coastal ocean methylotroph

Stephen J. Giovannoni; Darin H. Hayakawa; H. James Tripp; Ulrich Stingl; Scott A. Givan; Jang-Cheon Cho; Hyun-Myung Oh; Joshua B. Kitner; Kevin L. Vergin; Michael S. Rappé

OM43 is a clade of uncultured beta-proteobacteria that is commonly found in environmental nucleic acid sequences from productive coastal ocean ecosystems, and some freshwater environments, but is rarely detected in ocean gyres. Ecological studies associate OM43 with phytoplankton blooms, and evolutionary relationships indicate that they might be methylotrophs. Here we report on the genome sequence and metabolic properties of the first axenic isolate of the OM43 clade, strain HTCC2181, which was obtained using new procedures for culturing cells in natural seawater. We found that this strain is an obligate methylotroph that cannot oxidize methane but can use the oxidized C1 compounds methanol and formaldehyde as sources of carbon and energy. Its complete genome is 1304 428 bp in length, the smallest yet reported for a free-living cell. The HTCC2181 genome includes genes for xanthorhodopsin and retinal biosynthesis, an auxiliary system for producing transmembrane electrochemical potentials from light. The discovery that HTCC2181 is an extremely simple specialist in C1 metabolism suggests an unanticipated, important role for oxidized C1 compounds as substrates for bacterioplankton productivity in coastal ecosystems.


Applied and Environmental Microbiology | 2007

The SAR92 Clade: an Abundant Coastal Clade of Culturable Marine Bacteria Possessing Proteorhodopsin

Ulrich Stingl; Russell A. Desiderio; Jang-Cheon Cho; Kevin L. Vergin; Stephen J. Giovannoni

ABSTRACT Proteorhodopsin (PR) is a protein that is abundant in marine bacterioplankton. PR is hypothesized to be a light-dependent proton pump, thus creating a proton gradient that can be used for energy production without electron transport. Currently, the only culture that has been reported to possesses PR is the highly abundant alphaproteobacterium “Candidatus Pelagibacter ubique” (SAR11 clade), but surprisingly, its growth in batch culture was not enhanced by light. Here, we present the first cultured gammaproteobacterium that possesses a PR gene. Genome sequencing and analysis of HTCC2207 showed that the PR gene is present as a lone transcriptional unit directly followed by an operon containing genes that are presumably involved in the synthesis of retinal, the chromophore of PR. Half-time decay times of different PR intermediates in native HTCC2207 cells ranged between 2 and 15 ms, and the absorbance maximum of PR was determined to be 528 nm. Proteorhodopsin was identified in three additional strains, using a specific PCR assay on other cultured members of the SAR92 clade. Phylogenetic analyses of the PR genes determined that they form a deeply rooting cluster not closely related to any PR genes recovered so far. Fluorescence in situ hybridization and RNA blots showed that the SAR92 clade reaches up to 10% of the total bacterial population in surface waters close to the Oregon coast and decreases over depth and distance from the shore. Although the growth of HTCC2207 is limited by the amount of available carbon that is present in the medium applied, these cultures do not grow at higher rates nor do they have higher growth yields when incubated under light.


The ISME Journal | 2013

High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences

Kevin L. Vergin; Bank Beszteri; Adam Monier; J. Cameron Thrash; Ben Temperton; Alexander H. Treusch; Fabian Kilpert; Alexandra Z. Worden; Stephen J. Giovannoni

Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.

Collaboration


Dive into the Kevin L. Vergin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Rappé

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Alexander H. Treusch

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Craig A. Carlson

Bermuda Biological Station for Research

View shared research outputs
Top Co-Authors

Avatar

J. Cameron Thrash

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Ulrich Stingl

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rachel Parsons

Bermuda Institute of Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin Johnson

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge