Kevin Lamberts
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Lamberts.
Dalton Transactions | 2012
Carina Merkens; Nils Becker; Kevin Lamberts; Ulli Englert
The Al(III) complex of 3-cyanopentane-2,4-dionate (acacCN) features peripheric nitrile groups which may coordinate to silver cations. As the Al(acacCN)(3) building block ranges between inertness and lability, its reactivity towards Ag(I) salts depends on the solvent and the weakly or non-coordinating counter anions; an impressive range of different extended structures has been encountered. With AgPF(6), the original building block is retained and hexafluorophosphate remains uncoordinated. A highly symmetric 3D crystalline solid forms in the presence of trichloromethane, and with benzene a tetrasolvate with large solvent-filled voids is obtained. Two different classes of reaction products with silver triflate have been observed. In addition to networks incorporating Al(acacCN)(3), partial solvolysis may lead to a dinuclear methoxide-bridged derivative. The resulting Al(2)(μ-OMe)(2) core may be perceived as a four-connected node in a self-interpenetrating 3D network. Earlier studies reported transmetalation for the reaction of Al(acacCN)(3) with AgNO(3) and we find the same reactivity for silver tetrafluoroborate. Full degradation of the Al(III) building block with formation of [Ag(acacCN)] is observed.
CrystEngComm | 2014
Kevin Lamberts; Sven Porsche; Bernd Hentschel; Torsten W. Kuhlen; Ulli Englert
Four new structures based on CaCl2 and proline are reported, all with an unusual Cl–Ca–Cl moiety. Depending on the stoichiometry and the chirality of the amino acid, this metal dihalide fragment represents the core of a mononuclear Ca complex or may be linked by the carboxylate to form extended structures. A cisoid coordination of the halide atoms at the calcium cation is encountered in a chain polymer. In the 2D structures, CaCl2 dumbbells act as nodes and are crosslinked by either enantiomerically pure or racemic proline to form square lattice nets. Extensive database searches and topology tests prove that this structure type is rare for MCl2 dumbbells in general and unprecedented for Ca compounds.
Acta Crystallographica Section B-structural Science | 2012
Kevin Lamberts; Ulli Englert
Reactions of manganese(II) chloride, bromide and iodide with proline as an enantiopure and racemic ligand result in six crystalline solids for which diffraction experiments have been performed at 100 K. For two of these compounds, crystal structures at ambient temperature had been reported previously. The most surprising outcome of our systematic comparison lies in the role of chirality: with enantiopure proline three different coordination polymers have been obtained, whereas racemic proline yields isomorphous mononuclear complexes under the same reaction conditions.
Chemistry: A European Journal | 2015
Oliver Pecher; Bernhard Mausolf; Kevin Lamberts; Dirk Oligschläger; Carina Niewieszol (née Merkens); Ulli Englert; Frank Haarmann
Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs.
Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2014
Kevin Lamberts; Andreas Möller; Ulli Englert
Under accelerated and controlled evaporation, chain polymers crystallize from aqueous solutions of Ca(II) and Mn(II) halides with enantiopure L-alanine or racemic DL-alanine. In all ten solids thus obtained zwitterionic amino acid ligands bridge neighbouring cations. The exclusively O-donor-based coordination sphere around the metal cations is completed by aqua ligands; the halides remain uncoordinated and act as counter-anions for the cationic strands. Despite the differences in ionic radii and electronic structure between the main group and the transition metal cation, their derivatives with L-alanine share a common structure type. In contrast, the solids derived from DL-alanine differ and adopt structures depending on the metal cation and the halide. Homochiral chains of either chirality or heterochiral chains with different arrangements of crystallographic inversion centres along the polymer strands are encountered. On average, the six-coordinated Ca(II) cations, devoid of any ligand field effect, show more pronounced deviation from idealized octahedral geometry than the d-block cation Mn(II).
Chemistry: A European Journal | 2016
Oliver Pecher; Bernhard Mausolf; Volker Peters; Kevin Lamberts; Alexander Korthaus; Frank Haarmann
The quasibinary section of the intermetallic phases MAl4 and MGa4 with M=Sr and Ba have been characterised by means of X-ray diffraction (XRD) studies and differential thermal analysis. The binary phases show complete miscibility and form solid solutions M(Al1-x Gax )4 with M=Sr and Ba. These structures crystallise in the BaAl4 structure type with four- and five-bonded Al and/or Ga atoms (denoted as Al(4b), Al(5b), Ga(4b), and Ga(5b), respectively) that form a polyanionic Al/Ga sublattice. Solid state 27 Al NMR spectroscopic analysis and quantum mechanical (QM) calculations were applied to study the bonding of the Al centres and the influence of Al/Ga substitution, especially in the regimes with low degrees of substitution. M(Al1-x Gax )4 with M=Sr and Ba and 0.925≤x≤0.975 can be described as a matrix of the binary majority compound in which a low amount of the Ga atoms has been substituted by Al atoms. In good agreement with the QM calculations, 27 Al NMR investigations and single crystal XRD studies prove a preferred occupancy of Al(4b) for these substitution regimes. Furthermore, two different local Al environments were found, namely isolated Al(4b1) atoms and Al(4b2), due to the formation of Al(4b)-Al(4b) pairs besides isolated Al(4b) atoms within the polyanionic sublattice. QM calculations of the electric field gradient (EFG) using superlattice structures under periodic boundary conditions are in good agreement with the NMR spectroscopic results.
CrystEngComm | 2016
Kevin Lamberts; Philipp Handels; Ulli Englert; Emmanuel Aubert; Enrique Espinosa
In tyrosinium polyiodide hydrate, cations and anions aggregate in layers. The cation layers are stabilized by classical hydrogen bonds. The anionic part of the structure consists of parallel infinite polyiodide strands; the distance pattern along these chains suggests the presence of smaller subunits I3−, I2 and I−. Comparative calculations for small fragments and longer chains in frozen geometries indicate that this unexpected arrangement is favoured by local stabilizing anion⋯anion interactions and partial charge transfer between the subunits. The topological analyses of the electron density ρ, its negative Laplacian L = −∇2ρ and the electrostatic potential φ functions have been used to study the intrachain I–I and I⋯I interactions. Thorough analysis carried out with L indicates the successive arrangement of generalized charge concentration and charge depletion sites (for either L > 0 or L < 0 regions) along bond paths, and permits to distinguish iodides from iodine atoms even when they are involved in intermediate situations where interatomic distances and net charges are not conclusive.
Acta Crystallographica Section C-crystal Structure Communications | 2015
Kevin Lamberts; Mihaela-Diana Şerb; Ulli Englert
Reactions of calcium bromide with enantiopure and racemic proline in aqueous solution lead to two solids in which the zwitterionic amino acid acts as a bridging ligand between neighbouring cations. Depending on the chirality of the amino acid, topologically very different products are obtained. With racemic proline, bromide acts as a simple uncoordinated counter-anion for the cationic heterochiral chains in catena-poly[[aquacalcium(II)]-μ-aqua-μ3-DL-proline-μ2-DL-proline], {[Ca(C5H9NO2)2(H2O)2]Br2}n. In agreement with chemical intuition, only carboxylate and aqua O atoms coordinate the alkaline earth cation in a low-symmetry arrangement. In contrast, L-proline affords the two-dimensional network poly[dibromidobis(μ2-L-proline)calcium(II)], [CaBr2(C5H9NO2)2]n, with an unexpected CaBr2 unit in a more regular coordination sphere.
Acta Crystallographica Section E-structure Reports Online | 2012
Kevin Lamberts; Ulli Englert
The crystal structure of dl-alanine hydroiodide (1-carboxyethanaminium iodide), C3H8NO2 +·I−, is that of an organic salt consisting of N-protonated cations and iodide anions. The compound features homochiral helices of N—H⋯O hydrogen-bonded cations in the [010] direction; neighbouring chains are related by crystallographic inversion centers and hence show opposite chirality. The iodide counter-anions act as hydrogen-bond acceptors towards H atoms of the ammonium and carboxy groups, and cross-link the chains along [100]. Thus, an overall two-dimensional network is formed in the ab plane. No short contacts occur between iodide anions.
Dalton Transactions | 2016
Kevin Lamberts; Matteo Tegoni; Xiang Jiang; Hui-Zhong Kou; Ulli Englert
We report the first complete characterization of metallycryptates encapsulating Ag(I) cations: carboxylato ligands derived from l-proline and l-alanine chelate and bridge six Cu(II) centres arranged in a slightly distorted octahedral fashion. Eight oxygen atoms of these ligands are disposed in square-prismatic geometry and coordinate the monovalent cation. Two alternative metallacryptates based on alanine have been identified which differ with respect to aggregation: a solid in which pairs of encapsulating sites are formed competes with an infinite chain of M(I) coordinating sites. In contrast, the individual encrypting moieties are arranged as overall neutral and isolated molecular species in the proline-based metallacryptate. This proline derivative can accomodate Ag(I) and Na(I) cations and form a solid solution. Susceptibility measurements confirm ferromagnetic interactions between the Cu(II) within the hexanuclear proline cryptate and thus underline the similarity between solids accommodating Na(I) and Ag(I). Spectroscopic results suggest that these metallacryptates hardly dissociate in methanol solution.